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Abstract—As the most classical unsupervised dimension re-
duction algorithm, principal component analysis (PCA) has
been widely used in hyperspectral images (HSIs) preprocess-
ing and analysis tasks. Recently proposed superpixelwise PCA
(SuperPCA) has shown promising accuracy where superpixels
segmentation technique was first used to segment a HSI to
various homogeneous regions and then PCA was adopted in
each superpixel block to extract the local features. However, the
local features could be ineffective due to the neglect of global
information especially in some small homogeneous regions and/or
in some large homogeneous regions with mixed groundtruth
objects. In this paper, a novel spectral-spatial and superpixelwise
PCA (S3-PCA) is proposed to learn the effective and low-
dimensional features of HSIs. Inspired by SuperPCA we further
adopt superpixels based local reconstruction to filter the HSIs
and use the PCA based global features as the supplement of
local features. It turns out that the global-local and spectral-
spatial features can be well exploited. Specifically, each pixel
of a HSI is reconstructed by the nearest neighbors pixels in
the same superpixel block, which could eliminate the noise
and enhance the spatial information adaptively. After the local
reconstruction based data preprocessing, PCA is performed on
each region and the entire HSI to obtain local and global
features, respectively. Then we simply concatenate them to get the
global-local and spectral-spatial features for HSIs classification.
The experimental results on two HSIs datasets demonstrate the
superiority of the proposed method over the state-of-the-art
methods. The source code the proposed model is available at
https://github.com/XinweiJiang/S3-PCA.

Index Terms—Hyperspectral image, superpixel segmentation,
principal component analysis (PCA), dimensionality reduction,
spectral-spatial feature.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain hundreds of
spectral bands that provide rich information to identify
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and classify ground objects [1], [2]. Although the high-
dimensional spectral features could provide possibility to per-
form accurate HSIs classification, the curse of dimensionality
issue [3], [4] could arise especially in the case of high-
dimensional HSIs and insufficient labeled samples. Besides,
noise in HSIs could also decrease the accuracy of the HSIs
classification models [5]. Therefore, it is necessary to con-
duct dimensionality reduction (DR) to find low-dimensional
features from high-dimensional HSIs so as to reduce training
time and avoid overfitting for effective HSIs classification.

Various DR techniques had been introduced into HSIs
data preprocessing, which are typically divided into feature
selection [6] and feature extraction [3], [7], [8] approaches.
The former tends to select a representative subset from the
original high-dimensional features, while the latter usually
tries to project the original data from the high-dimensional
observation space to a low-dimensional subspace. In this paper,
we focus on the feature extraction based DR models.

According to the availability of label information, feature
extraction algorithms can be roughly divided into unsupervised
and supervised models. Principal component analysis (PCA)
[9] could be the most widely used unsupervised DR algorithm.
Without using label information, PCA aims to find the optimal
linear projections to transform high-dimensional data into low-
dimensional subspace by maximizing the variance in each
projected dimension. To handle the nonlinear structures, the
manifold learning models for HSIs feature extraction had
attracted researchers’ attention, where the inherent manifold
structures embedded in high-dimensional observations are kept
in low-dimensional subspace, e.g., neighborhood preserving
embedding (NPE) [10], locality preserving projection (LPP)
[11], local pixel NPE (LPNPE) [12] and local neighborhood
structure preserving embedding (LNSPE) [13]. By contrast,
supervised DR models use extra label information to extract
discriminative low-dimensional features. The representative
supervised DR methods include linear discriminant analysis
(LDA) [14], local fisher dicriminant analysis (LFDA) [15],
nonparametric weighted feature extraction (NWFE) [16], etc..

Although the aforementioned methods had been success-
fully used for HSIs features extraction, the accuracy of the
models could be compromised due to noise and lack of spatial
information. It is inevitable that there are noise in HSIs when
the images were captured, which could bring difficulties for the
feature extraction and classification. To denoise HSIs, various
image filtering models have been introduced, such as mean,
gabor and propagated filters [17], which could efficiently
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reduce noise and smoothen the homogeneous regions in HSIs.
However, since the filters usually use various windows to filter
images, they could fail when processing complex boundary
regions. Alternatively, there are some reconstruction based
methods for HSIs denoising and data augmentation. For ex-
ample, low-rank representation with neighborhood preserving
regularization (LRR NP) [18] have been proposed where LRR
with the neighbor preserving regularization were used to
preprocess HSIs. In LNSPE [13] the dual structure preserving
model were developed by considering the nearest neighbor
reconstruction points into the neighborhood scatter extraction
model, which can be regarded as a new filter. Local geometric
structure Fisher analysis [19] was introduced where locally
reconstructed samples based on NPE along with original data
are used to construct the intrinsic graph and penalty graph
which can be viewed as a type of data augmentation. But
spatial information in HSIs are not considered in these models
which could decrease the accuracy of the models.

In addition, it is acknowledged that neighbor pixels are
likely to belong to the same class, so the spatial information of
HSIs is beneficial to HSIs feature extraction and classification
[1]. Among these methods the image segmentation technology
based spatial models have shown promising performance in
terms of accuracy and complexity, because it can effectively
utilize spatial and spectral information of HSIs based on
superpixels [20]–[25]. For example, Gu et. al. [24] proposed a
superpixel based tensor model for HSIs classification, where a
multiattribute superpixel tensor model was constructed on the
top of multiattribute superpixel maps based on the concept
of extended morphological profiles to fully exploit the third-
order spectral–spatial information. Chen et. al. [25] proposed
a superpixel-based bilateral filtering algorithm combined bilat-
eral filtering and superpixel segmentation to effectively extract
the spectral-spatial features based on superpixel. However,
the two models highly depend on the filters. By contrast,
Jiang et. al. [20] proposed superpixelwise PCA (SuperPCA)
without adopting filters based on the assumption that distinct
superpixel blocks should have different PCA based linear
projections to extract low-dimensional and local HSIs features.
The new model has shown high accuracy compared to typical
DR methods based on spectral information and other spectral-
spatial feature extraction techniques [21], [22]. Similar to
SuperPCA, superpixelwise LPP [21], superpixelwise Kernel
PCA [22] and superpixel-based LDA [23] were also developed
to extract the nonlinear features in superpixel blocks by
employing LPP, KPCA and LDA to replace PCA in Super-
PCA, respectively. However, SuperPCA and its variants only
focused on the local spatial information and ignored the global
structures of HSIs, which compromises the accuracy of the
feature extraction methods. Especially in the cases of limited
data in some small homogeneous regions with noise and/or
mixed groundtruth objects in some large superpixel blocks,
results from SuperPCA based models could be unsatisfactory.

In this paper, we propose a novel spectral-spatial feature
extraction method, termed spectral-spatial and superpixelwise
PCA (S3-PCA), which can efficiently make use of spatial
information to eliminate noise through superpixels based local
reconstruction and to extract the global-local and spectral-

spatial features for HSIs classification. Specifically, the con-
tributions of the paper are listed as follows: 1)By performing
superpixels based local reconstruction, the spatial information
such as edges in HSIs could be enhanced, and the noise
in superpixel blocks could be eliminated effectively. 2)By
adopting PCA on the global HSI data and each superpixel
block, the global and local features can be extracted, respec-
tively. Then by simply concatenating them the global-local and
spectral-spatial features can be acquired. 3)The experimental
results on two HSIs data sets demonstrate the proposed method
outperforms typical and state-of-the-art DR models.

The rest of this paper is organized as follows. In Section II
we first review and introduce the related works including PCA
and SuperPCA.The proposed method is described in Section
III, and the experimental results are provided in Section IV,
followed by the conclusion of our work.

II. RELATED WORKS

In this section, we briefly introduce the classic PCA and
recently proposed SuperPCA.

A. PCA

Given the high-dimensional data X = {x1, x2, ..., xP } ∈
RB×P with dimension B and the number of samples P ,
PCA tries to find a linear transformation from the original
B-dimensional space to a low d-dimensional space Y =
{y1, y2, ..., yP } ∈ Rd×P where the variances are maximized.
Denote the transformation matrix as W ∈ RB×d, the linear
projection between X and Y can be expressed by Y = WT X.
Mathematically, the objective function of PCA is

W∗ = argmax
WT W=I

Tr(WTCov(X)W), (1)

where Cov(X) is the covariance matrix of X. In PCA, we se-
lect the eigenvectors w corresponding to the first d eigenvalues
λ to form the projection matrix W. Due to its effectiveness
and efficiency, PCA has been widely used to extract low-
dimensional features of HSIs data. In reality, the distribution
of land objects presents the characteristics of regional homo-
geneity which means the closer the land objects, the more
likely they are to belong to the same class and the reshaping
from 3D cube to 2D matrix may ignore the differences of
homogeneous regions which leads to poor results from PCA.

B. SuperPCA

SuperPCA [20] firstly adopted superpixel segmentation
techniques to segment a HSI to various homogeneous regions,
and then PCA is used in each superpixel block to extract
low-dimensional and local features for HSIs classification.
There are many superpixel segmentation methods. Roughly,
the existing superpixel segmentation algorithms can be divided
into the gradient-based methods [26] and graph-based methods
[27]. Simple linear iterative clustering (SLIC) [26] is one of
the most widely used gradient-based segmentation method
due to its simplicity and effectiveness, which adopts a k-
means clustering approach to generate superpixels blocks.
A representative graph-based segmentation technique is the
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Entropy Rate Segmentation (ERS) [27] which generates a
2D superpixel map. Due to its promising performance and
high efficiency it is used for HSIs superpixel segmentation in
SuperPCA.

Given a graph (G = (V,E)) for a HSI, the vertices set (V)
corresponds to the pixels in the image to be segmented and
the edges set (E) records the pairwise similarities. ERS tends
to select a subset of edges A ⊆ E such that the resulting
graph, G∗ = (V,A), contains exactly K connected subgraphs.
To generate the most suitable superpixel segmentation, the
objective function of ERS is denoted by

A∗ = argmax
A

Tr {H(A) + αB(A)} , s.t.A ⊆ E. (2)

In Eq. 2, H(A) is the entropy rate term for generating
homogeneous and compact clusters, while B(A) is used to
encourage the cluster with similar sizes. α is to balance the
contributions of the entropy rate term H(A) and the regulariza-
tion term B(A). To solve Eq. 2, a greedy heuristic algorithm
is adopted. ERS has been proven to be a powerful superpixel
segmentation method for HSIs spatial information extraction
[20]. In SuperPCA, once ERS based superpixel segmentation
is done, PCA is then used in each superpixel block to extract
local spectral-spatial features for HSIs classification.

III. PROPOSED METHOD

In this section, we introduce the proposed spectral-spatial
and superpixelwise PCA (S3-PCA) model, which can effi-
ciently eliminate the noise and extract the global-local and
spectral-spatial features for HSIs classification. As can be
seen from Fig. 1, a HSI is firstly divided into multiple
homogeneous regions by ERS based superpixel segmentation
technique, and then the pixels in each homogeneous region
are spatially reconstructed by their neighbors belonging to
the same superpixel block for HSI denoising. Secondly, Su-
perPCA based feature extraction is employed to obtain low-
dimensional and local spectral-spatial features. Thirdly, in
order to take into account the global structures we simply
perform classic PCA on the reconstructed HSI globally to
obtain the global features with low dimension, and then we
concatenate and combine all these local and global features
to form updated dimension-reduced HSI features. Finally, we
make use of PCA again to reduce the dimension of the
concatenated global-local features for classification. Compared
to SuperPCA and other superpixel-based DR methods, the
proposed method could efficiently extract the global-local and
spectral-spatial features especially when dealing with pixels in
some small homogeneous regions with noise and/or in some
large superpixel blocks with mixed groundtruth objects.

Let’s denote a HSI data by X3 ∈ RM×N×B , where M , N
and B are the numbers of width, height, and spectral bands,
respectively. Typically, we reshape it from 3D cube to 2D
matrix for the subsequent feature extraction, leading to X =
[x1, x2, ..., xP ] ∈ RB×P (P = MN) with each column vector
xi = [xi1, xi2, ..., xiB ]

T corresponding to one pixel of the HSI.

A. Superpixel based Local Reconstruction
Traditional spectral-spatial feature extraction methods try

to consider the spatial information via a small spatial window

[28], [29], but the spatial structures could not be effectively
extracted because the local windows do not provide sufficient
structural information and could cause spectral distortion [30].
To overcome the issues, we use the superpixel segmentation
technique to extract the homogeneous objects, and then the
spatial neighbor reconstruction model is developed to extract
effective spatial information for each homogeneous region.

Superpixel segmentation can effectively extract spatial infor-
mation of HSIs according to intrinsic features such as texture.
In this paper, ERS is adopted to generate homogeneous regions
from a HSI due to its high efficiency and performance. Before
adopting ERS, we have to firstly perform PCA to obtain
the first PC denoted by If ∈ RM×N , to capture the major
information of a HSI and reduce the computational burden
in the process of superpixel segmentation. Then, ERS can be
conducted on If to generate homogeneous superpixel blocks

If =

S⋃
k=1

Hk s.t. Hk ∩Hg = ∅, (k 6= g) (3)

where S is the number of superpixels, and Hk represents the
k−th superpixel.

To further reduce noise and obtain effective spectral-spatial
features in superpixel blocks, inspired by LNSPE [13] the
superpixel based local reconstruction method is developed for
HSIs denoising. Different from LNSPE where local structure
is based on k nearest neighbors without considering spatial
distribution of HSIs, in this paper local reconstruction based
on superpixels is performed for each pixel in every superpixel
block as shown in the top right corner of Fig. 1. We aim to
reconstruct each sample based on the rest data in the same
superpixel block, that is, the spatial nearest neighbor pixels.

Specifically, for each sample xi ∈ RB×1 in a superpixel
block, its k nearest spatial neighbors belonging to the same
superpixel can be denoted by Zi = {z1, z2, ..., zk} ∈ RB×k.
Let’s further define the similarity weight between x and zj(j =
1, . . . , k) by

wj =
exp(−||xi − zj ||22/2t2)

h
(4)

where t =
1

k

∑k
i=1 ||xi − zj ||22, h =

∑k
i=1 exp(−||x −

zj ||22/2t2). Then we perform the calculation in Eq. 4 based
on all elements in Z to obtain the reconstruct pixel

x∗i =

k∑
j=1

wj × zj . (5)

Finally, we replace the original pixel xi with the reconstructed
pixel x∗i and reconstruct all pixels in each homogeneous
region to obtain the denoised HSI data. To demonstrate the
effectiveness of the superpixels based local reconstruction,
three false colour composites (FCC) are provided in Fig. 2
corresponding to the raw, 5×5 mean filtering and superpixels
based locally reconstructed Indian Pines data, respectively. The
number of superpixels S is 75, the number of spatial neighbors
k is 15, and the selected bands are 26,14,8. It is clear that the
noisy points in raw image corresponding to some white and
black points are eliminated by the proposed superpixels based
local reconstruction, and the edges are enhanced as well.
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Fig. 1: Outline of the proposed S3-PCA based HSI classification framework.

(a) Raw (b) Mean filter (c) Local reconstruction

Fig. 2: The false colour composites (FCC) corresponding to
the raw, 5 × 5 mean filtering and superpixels based locally
reconstructed Indian Pines data, respectively.

B. Global-Local and Spectral-Spatial Feature Extraction

To further improve the accuracy of SuperPCA where only
local spectral-spatial features are extracted and the global
structures of a HSI are ignored, the global-local and spectral-
spatial feature extraction model is developed by simply com-
bining global PCA and local SuperPCA based features. Al-
though solely using global PCA for HSIs feature extraction
could be unsatisfactory, the global information of a HSI could
be valuable to a certain extent, because it could provide global
structures of the HSI for effective feature extraction. To take
advantage of the merits of local SuperPCA and global PCA,
we try to fuse them in a simple way by concatenating the
features based on local SuperPCA and global PCA to form a
composite global-local and spectral-spatial feature.

Mathematically, with global PCA and local SuperPCA we
can get two features, which are the global PCA based global
feature Hg ∈ Rd×P and the SuperPCA based local feature
Hl ∈ Rd×P , respectively. Then we simply concatenate them
along the spectral dimension, leading to the novel global-local

and spectral-spatial feature H

H = [Hg, Hl] ∈ R2d×P . (6)

Since both the features are the linear transformation based
on PCA, there is no need to consider that the concatenated
multiple feature sets may be incompatible, resulting in the
problem of highly nonlinearity in the induced feature space
[31]. After concatenating the global and local features, the
dimension of the new feature H could become large, thus it is
necessary to perform PCA again on the new global-local and
spectral-spatial feature to reduce its feature dimension. We
will compare the three features, global PCA based feature,
local SuperPCA based feature as well as the global-local and
spectral-spatial feature in the next section.

It is also worth emphasizing that the proposed S3-PCA is
related to SuperPCA, the key ideas behind the proposed S3-
PCA consisting of the superpixels based local reconstruction
for HSIs denoising and the global-local and spectral-spatial
feature extraction can be integrated into SuperPCA separately,
leading to the Reconstructed SuperPCA (RSuperPCA) and
Concatenated SuperPCA (CSuperPCA), respectively, and then
the proposed S3-PCA can be viewed as the combination of
RSuperPCA and CSuperPCA. We will analyze and compare
these models in the experiments.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, two HSIs data are used to verify the
effectiveness of the proposed model. The Indian Pines data
was gathered by AVIRIS sensor in 1992 which consists of
145×145 pixels and 224 spectral reflectance bands in the
wavelength range 0.4-2.5 µm. 20 bands were discarded due
to the effects of noise and water absorption. The total number
of labeled samples was 10249 from 16 classes. The University
of Pavia data was acquired by ROSIS sensor in 2002 which
contains 103 spectral bands with the size of 610×610 after
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TABLE I: The number of samples for each class in Indian
Pines and University of Pavia

Indian Pines University of Pavia
Class Names Numbers Class Names Numbers

Alfalfa 46 Asphalt 6631
Corn-notill 1428 Bare soil 18649

Corn-mintill 830 Bitumen 2099
Corn 237 Bricks 3064

Grass-pasture 483 Gravel 1345
Grass-trees 730 Meadows 5029

Grass-pasture-mowed 28 Metal sheets 1330
Hay-windrowed 478 Shadows 3682

Oats 20 Trees 947
Soybean-notill 972

Soybean-mintill 2455
Soybean-clean 593

Wheat 205
Woods 1265

Buildings-Grass-Trees-Drives 386
Stone-Steel-Towers 93

Total Number 10249 Total Number 42776

removing the noisy and water absorption bands. The geometric
resolution is 1.3m with the spectral coverage from 0.43-0.86
µm. The data contain 42776 labeled pixels with 9 classes.

To verify the proposed method, eight DR methods are
compared with the proposed model as well as the baseline
approaches with the raw spectral features. The comparative
models includes six unsupervised feature extraction methods
(PCA [9], LPP [11], NPE [10],LPNPE [12],LNSPE [13],
SuperPCA [20]), and two supervised feature extraction meth-
ods (NWFE [16], LFDA [15]). Similar to the previous work
in [20], we use three measurements, including the overall
accuracy (OA), average accuracy (AA) and Kappa to evaluate
the performance of different dimension reduction algorithms
for HSIs classification. To boost the accuracy of the aforemen-
tioned models, 5×5 weighted mean filter is initially adopted to
preprocess the HSIs data for all the feature extraction methods
except SuperPCA and the proposed S3-PCA, then support
vector machine (SVM) [4] classifier is used for HSIs clas-
sification based on the extracted features with RBF kernel and
parameters grid search. All methods are tested on MATLAB
R2018a and Windows 10 64bit platforms equipped with Intel
Core i7-7700 CPU (3.60GHz) and 8GB memory.

In our experiments, the training and testing samples are
randomly selected from the available groundtruth maps for
the two data sets. The sample sizes regarding each groundtruth
class in the two data sets are shown in Table I. For each land
cover class in Indian Pines and University of Pavia data sets,
we randomly choose T = 5, 10, 20, 30, 40, 50, 60 samples
to be the training data, with the remaining samples to be the
testing data. For some classes with a small sample size, such
as grass-pasture-mowed and oats in the Indian Pines data, we
only selected half of the total number of samples as the training
set. To make fair comparison, all the experiments are repeated
10 times and the average results are reported.

A. Parameters Settings

There are a few parameters in the proposed S3-PCA method
to be manually preset, including the number of nearest neigh-
bor k in local reconstruction and the number of superpixels

blocks S in ERS based superpixels segmentation. In order
to analyze the influence of the parameters, we conduct the
parameters sensitivity experiments for the proposed S3-PCA.
We also provide extra experiments in supplementary documen-
tation to testify the influence of the dimensions settings for the
three PCA models used in S3-PCA. Based on the results we
simply set the reduced dimensions corresponding to the three
PCA models in S3-PCA to be 30 in the following experiments.

Firstly, by referring to the experiments settings in Su-
perPCA, we similarly set the number of superpixels blocks
S =100, 20 for Indian Pines and University of PaviaU,
respectively. Then the optimal number of nearest neighbor k
on the two data is investigated. Fig. 3(a) and (b) shows the
OAs corresponding to S3-PCA when the number of nearest
neighbors k ranges in {5, 7, 9, 11, 13, 15, 17} and T = 30. If
the number of pixels in some superpixel blocks is smaller than
the number of nearest neighbors k, all pixels in the superpixel
block except the target pixel are used for local reconstruction.
From the results in Fig. 3(a) and (b), we can conclude that with
the increase of the number of nearest neighbors, the OAs in the
two data tend to rise first and then decrease. If the number of
nearest neighbors k is too small, it is difficult to obtain enough
spatial information through reconstruction. By contrast, if the
value of k is too large, it is difficult to ensure that the
neighbors participating in the reconstruction are all from the
same groundtruth class, which leads to a poor reconstruction
results. By setting a proper value for the number of nearest
neighbors, S3-PCA and RSuperPCA always perform better
than SuperPCA and LNSPE. Obviously, the proposed S3-
PCA eliminate the noise by adopting the superpixels to locally
reconstruct each pixel, which is more effective than LNSPE
without using spatial information. Based on the above results,
we can determine that the optimal parameters k = 15, 13 for
Indian Pines and University of Pavia data, respectively.

Furthermore, with the optimal parameter k we also in-
vestigate the influence of the number of superpixel blocks.
Fig. 3(c) and (d) shows the influence of the number
of superpixels blocks in terms of OAs based on Super-
PCA, Concatenated-SuperPCA (CSuperPCA), Reconstructed-
SuperPCA (RSuperPCA) and S3-PCA in the two data,
where the number of superpixel S is chosen from
{1, 3, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 300} and we can
get the best number of superpixels S = 75, 30 in Indian
Pines and the University of Pavia for S3-PCA, respectively.
As can be seen from Fig. 3(c) and (d) that with the number
of superpixels S increases, the OAs based on SuperPCA,
CSuerpPCA, RSuperPCA and S3-PCA show the trend of
rising first and then falling. Moreover, by setting a suitable
number of superpixels, the classification accuracy based on the
proposed CSuperPCA, RSuperPCA and S3-PCA are usually
higher than SuperPCA. Specifically, in the Indian Pines, the
accuracy improvement by superpixels based local reconstruc-
tion is more obvious than the improvement by the global-
local feature concatenation. This is possibly because in the
data set the samples are more clustered and show the effect
of regionalization so that enough spatial information can be
obtained through spatial reconstruction via superpixels. The
results in the University of Pavia data display that the accuracy
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Fig. 3: OAs from the proposed method in figures (a,b) corre-
spond to different numbers of neighbors k for the two data
when the numbers of superpixels S are set to be 100,20,
respectively, and OAs in figures (c,d) correspond to different
settings of the numbers of superpixels S when numbers of
neighbors k are optimally set to be 15,13, respectively.

improvement by the global-local feature concatenation is more
obvious than another data set. This is possibly because in the
University of Pavia data samples are more scattered than the
Indian Pines data set. Consequently, the results of the proposed
S3-PCA illustrate that combination of the superpixels based
local reconstruction for HSIs denoising plus the global-local
and spectral-spatial feature extraction can be effective.

B. SuperPCA based Models Comparison

The proposed S3-PCA is related to SuperPCA with the
differences of the local reconstruction based denoising plus
global-local and spectral-spatial feature extraction. Generally
speaking, the two ideas can be separately integrated into
SuperPCA, leading to the Reconstructed SuperPCA (RSu-
perPCA) and Concatenated SuperPCA (CSuperPCA), respec-
tively. To further demonstrate the effectiveness of the two
ideas behind S3-PCA, firstly we compare the four SuperPCA
based methods on the Indian Pines and University of Pavia
sets when the number of superpixles are S = 100, 20 and the
numbers of local reconstruction neighbors are k = 15, 13,
respectively. Fig. 5 shows the ratios between the first and
second eigenvalues of SuperPCA and RSuperPCA. It is ac-
knowledged that the larger the ratio, the more representative
and discriminative the features are as illustrated in Super-
PCA. Since local reconstruction is carried out by using the
spatial neighbors belonging to the same superpixel blocks,
RSuperPCA could gain larger ratio than SuperPCA as can
be seen from the blue and red horizontal lines in Fig. 5 which

TABLE II: OAs from the four methods on Indian Pines and
University of Pavia data with SVM Classifier

Datasets T.N.s/C SuperPCA CSuperPCA RSuperPCA S3-PCA

Indian
Pines

5 77.14% 77.77% 78.74% 80.36%
10 85.75% 86.04% 86.57% 87.44%
20 92.80% 93.28% 93.79% 93.98%
30 94.61% 94.81% 95.69% 95.81%

University
of Pavia

5 74.36% 78.92% 79.17% 83.70%
10 83.39% 89.02% 89.06% 90.88%
20 89.34% 92.22% 93.50% 95.63%
30 91.26% 93.61% 94.82% 96.24%

corresponds to the average ratio of RSuperPCA and SuperPCA
in all the homogeneous regions, respectively. It also means
that compared to SuperPCA, RSuperPCA can obtain more
discriminative features for HSIs classification, which proves
our claim that superpixel based local reconstruction is capable
of effectively eliminating noise in HSIs. Moreover, we conduct
the comparative experiments on the two HSIs data to compare
SuperPCA and CSuperPCA where the features from global
PCA and local SuperPCA are simply concatenated without
the aforementioned local reconstruction based HSIs denoising.
For the Indian Pines and University of Pavia data sets, we
randomly select samples with T = 5, 10, 20, and 30 from
each class to be the training set, and the remaining samples
as the test set. We use “T.N.s/C” to denote the numbers of
training data from each class in Table II. As can be seen from
Table II that CSuperPCA is more effective than SuperPCA
which proves our argument that the global information from
global PCA can enhance the local features from SuperPCA to a
certain extent. Also, by comparing SuperPCA to RSuperPCA,
we can obtain the similar conclusion in Fig. 5 because the
superpixel based local reconstruction can efficiently remove
the noise and improve the features in each homogeneous
region. Based on the results in Table II, we can see that
the proposed S3-PCA outperforms SuperPCA, CSuperPCA
and RSuperPCA, which can efficiently extract the global-
local and spectral-spatial features to improve the classification
accuracy. Extra experiments in supplementary documentation
are also provided to compare SuperPCA and S3-PCA by data
visualization in 2D and 3D feature space, which subjectively
show the superiority of the proposed S3-PCA over SuperPCA.

C. Comparisons with State-of-the-Arts Models

In this subsection, we conduct extensive experiments to
compare the proposed S3-PCA to classical and state-of-the-art
DR models. We firstly show the classification results when the
number of samples for each class in the training set is 30 with
the numbers of superpixles S = 75, 30, the numbers of spatial
neighbors k = 15, 13 in Indian Pines and the University of
Pavia respectively, and the reduced dimension d = 30.

The classification maps of Indian Pines and the University of
Pavia data are provided in Figs. 4 and 6. From the classification
results we can see that the traditional unsupervised spectrum-
based DR methods, such as PCA [9], LPP [11], NPE [10]
perform poorly. By contrast, better results can be obtained
based on some state-of-the-art unsupervised DR algorithms
such as LPNPE [12] where spatial information is extracted by
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(a) Original (b) Ground Truth (c) RAW(69.76) (d) PCA(66.65) (e) LPP(85.48) (f) NPE(86.28)

(g) LNSPE(89.90) (h) LPNPE(91.30) (i) NWFE(88.26) (j) LFDA(87.17) (k) SuperPCA(93.84) (l) S3-PCA(95.29)

Fig. 4: Classification maps of the Indian Pines data from different models. (a) first PCA of original HSI. (b) Ground Truth.
(c) Raw pixel. (d) PCA. (e) LPP. (f) NPE. (g) LNSPE. (h) LPNPE. (i) NWFE. (j) LFDA. (k) SuperPCA. (l) S3-PCA.

TABLE III: OAs from PCA, LPP, NPE, LNSPE, LPNPE, NWFE, LFDA, SuperPCA and S3-PCA on Indian Pines data

Indian Pines

Class Training Samples PCA LPP NPE LNSPE LPNPE NWFE LFDA SuperPCA S3-PCA
Alfalfa 23 95.65% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Corn-notill 30 50.07% 74.75% 80.47% 82.12% 92.13% 79.26% 82.98% 92.85% 90.70%
Corn-mintill 30 69.13% 89.38% 88.63% 95.75% 95.63% 90.38% 93.13% 92.50% 99.00%

Corn 30 79.23% 93.72% 93.72% 91.79% 91.79% 93.24% 94.69% 95.65% 97.58%
Grass-pasture 30 91.17% 93.16% 94.70% 92.72% 97.57% 95.58% 94.26% 99.34% 99.56%

Grass-trees 30 86.14% 97.00% 98.86% 97.86% 99.57% 99.00% 99.00% 97.14% 97.14%
Grass-pasture-mowed 14 85.71% 100.00% 100.00% 100.00% 100.00% 92.86% 100.00% 92.86% 85.71%

Hay-windrowed 30 86.61% 96.43% 98.44% 99.55% 97.77% 98.88% 99.78% 99.55% 100.00%
Oats 10 60.00% 100.00% 90.00% 90.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Soybean-notill 30 71.02% 78.56% 77.39% 83.86% 88.43% 82.80% 81.53% 83.55% 86.20%
Soybean-mintill 30 46.60% 79.05% 78.43% 84.95% 80.70% 81.03% 75.67% 91.59% 94.89%
Soybean-clean 30 68.21% 87.39% 88.28% 94.49% 97.51% 92.90% 90.05% 92.72% 95.38%

Wheat 30 97.71% 97.71% 100.00% 99.43% 100.00% 99.43% 99.43% 99.43% 99.43%
Woods 30 85.99% 92.23% 90.85% 92.96% 94.74% 95.14% 93.20% 99.84% 99.84%

Buildings-Grass-Trees-Drives 30 56.46% 93.54% 96.07% 99.16% 96.63% 96.07% 95.79% 98.60% 96.91%
Stone-Steel-Towers 30 98.41% 96.83% 100.00% 100.00% 100.00% 98.41% 98.41% 98.41% 98.41%

OA 66.65% 85.48% 86.28% 89.90% 91.30% 88.26% 87.17% 93.84% 95.29%
AA 76.76% 91.86% 92.24% 94.04% 95.78% 93.44% 93.62% 95.88% 96.30%

Kappa 62.68% 83.49% 84.43% 88.50% 90.10% 86.64% 85.42% 92.94% 94.61%
Time (s) 0.072 3.251 9.326 26.242 3.881 2.482 1.674 0.304 2.228

TABLE IV: OAs from PCA, LPP, NPE, LNSPE, LPNPE, NWFE, LFDA, SuperPCA and S3-PCA on University of Pavia data

University of Pavia

Class Training Samples PCA LPP NPE LNSPE LPNPE NWFE LFDA SuperPCA S3-PCA
Asphalt 30 78.91% 85.43% 82.84% 84.87% 91.76% 87.11% 75.44% 79.64% 93.21%

Bare soil 30 77.24% 93.69% 90.50% 91.04% 91.67% 92.75% 87.93% 93.08% 94.65%
Bitume 30 80.04% 88.88% 88.84% 84.20% 89.51% 88.06% 72.16% 97.54% 99.81%
Bricks 30 95.02% 93.05% 91.83% 93.24% 93.28% 93.05% 95.22% 85.33% 93.47%
Gravel 30 99.92% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 96.88% 100.00%

Meadow 30 64.69% 88.86% 83.40% 89.98% 92.98% 87.00% 85.10% 94.80% 99.68%
Metal sheet 30 83.31% 93.85% 90.77% 91.92% 90.38% 92.85% 92.23% 92.38% 98.31%

Shadows 30 53.48% 84.26% 76.75% 86.34% 83.57% 82.97% 77.33% 92.55% 99.48%
Trees 30 99.45% 94.44% 95.09% 95.20% 98.26% 98.26% 91.49% 95.53% 98.15%
OA 76.75% 90.96% 87.71% 89.77% 91.51% 90.50% 85.08% 90.96% 95.95%
AA 81.34% 91.38% 88.89% 90.75% 92.38% 91.34% 86.32% 91.97% 97.42%

Kappa 70.11% 88.11% 83.89% 86.62% 88.86% 87.48% 80.55% 88.16% 94.68%
Time (s) 0.362 171.038 564.237 1679.264 194.471 2.269 1.414 0.504 154.029
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TABLE V: OAs from the proposed method and nine comparative algorithms on two HSIs data with different training data

Datasets T.N.s/C Raw PCA LPP NPE LNSPE LPNPE NWFE LFDA SuperPCA S3-PCA

Indian
Pines

5 44.87%±6.50% 45.47%±5.33% 51.56%±6.89% 53.26%±6.42% 55.01%±4.48% 71.73%±3.66% 60.08%±2.68% 59.12%±3.75% 77.14%±5.16% 80.36%±4.21%
10 55.77%±3.27% 55.07%±2.87% 71.09%±2.60% 71.44%±3.39% 73.73%±2.94% 81.60%±3.87% 70.03%±2.52% 64.06%±2.95% 85.75%±3.06% 87.44%±1.37%
20 63.81%±3.37% 62.16%±2.64% 81.88%±1.49% 82.84%±1.37% 85.28%±1.42% 89.41%±1.73% 85.08%±1.67% 82.48%±2.02% 92.80%±1.46% 94.16%±1.61%
30 68.77%±1.27% 66.24%±0.58% 85.45%±2.16% 86.45%±1.91% 88.78%±1.91% 92.74%±1.56% 88.86%±1.61% 87.58%±1.14% 94.61%±0.81% 95.81%±0.77%
40 71.64%±1.05% 68.90%±1.06% 87.51%±1.68% 88.54%±1.32% 90.60%±1.19% 93.37%±1.56% 90.37%±1.48% 89.68%±0.60% 95.33%±0.97% 96.24%±0.84%
50 74.18%±1.20% 70.70%±1.01% 89.15%±1.20% 89.95%±1.26% 91.96%±1.15% 94.57%±1.26% 91.78%±1.32% 90.97%±0.75% 95.42%±1.02% 96.67%±0.85%
60 75.24%±1.12% 71.79%±1.33% 90.16%±0.92% 90.97%±0.72% 93.01%±0.85% 95.25%±0.89% 92.52%±0.81% 91.71%±0.91% 95.72%±0.56% 97.05%±0.85%

University
of Pavia

5 64.59%±5.07% 65.26%±5.14% 70.62%±5.79% 68.66%±6.05% 68.26%±8.56% 79.63%±3.17% 72.18%±5.46% 75.27%±2.83% 74.36%±3.65% 83.70%±3.41%
10 70.22%±3.05% 67.00%±3.06% 79.12%±3.82% 77.76%±4.24% 78.71%±6.26% 86.09%±2.72% 81.31%±2.27% 78.90%±2.84% 83.39%±3.33% 90.88%±2.58%
20 75.85%±2.37% 75.80%±2.31% 86.92%±1.60% 84.70%±1.91% 87.71%±2.02% 90.62%±1.89% 89.14%±1.94% 81.65%±2.14% 89.34%±1.54% 95.63%±1.10%
30 76.45%±1.50% 76.13%±1.85% 89.59%±1.64% 87.33%±1.69% 90.61%±1.41% 91.70%±1.12% 90.64%±1.60% 85.56%±1.62% 91.26%±0.99% 96.24%±1.33%
40 77.76%±1.26% 77.41%±1.49% 91.12%±1.45% 89.13%±1.17% 92.50%±1.08% 93.35%±0.81% 91.77%±1.19% 88.27%±1.33% 92.19%±0.81% 96.72%±1.14%
50 79.12%±1.31% 78.77%±1.31% 92.38%±1.23% 91.01%±1.46% 93.62%±0.79% 94.09%±0.68% 92.66%±0.65% 89.75%±1.58% 93.25%±0.90% 97.34%±0.77%
60 80.52%±1.32% 79.87%±1.16% 93.52%±0.89% 92.05%±1.07% 94.59%±0.62% 94.74%±0.80% 93.62%±0.92% 91.40%±1.13% 93.99%±1.08% 97.84%±0.49%
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Fig. 5: Comparisons of ratio between the first and second
eigenvalues (λ1/λ2). The red and blue plots are the ratios
corresponding to all the homogeneous regions based on Su-
perPCA and RSuperPCA when the numbers of superpixels are
set to the optimal values S = 100, 20 for Indian Pines and the
University of Pavia, respectively. The red and blue horizontal
line represents the average ratio of all the homogeneous re-
gions based on SuperPCA and RSuperPCA. For convenience,
the logarithmic function is used to scale the values of ratios.

local spatial-spectral scattering and LNSPE [13] where local
reconstruction based on k nearest neighbors is adopted for
feature extraction by combining the dual structure preserving
model with neighborhood scatter extraction model. Also, the
supervised DR methods such as LFDA [15] and NWFE [16],
provides relatively high classification accuracy because they
make use of label information to obtain more discriminative
features. SuperPCA efficiently considers the spatial informa-
tion of HSIs through superpixel segmentation, which performs
better than the aforementioned algorithms, and the proposed
S3-PCA method achieves the best results.

To compare and analyze the superpixels based models, the
superpixel segmentation results are also provided in Fig. 4(b)
and Fig. 6(b). As can be seen from Fig. 4, compared to
SuperPCA the proposed S3-PCA can significantly improve
the accuracy for the large regions in Indian Pines data (e.g.,
the Soybean-notill located in the middle yellow area and the
Soybean-mintill located in the middle pink area) possibly
because of the superpixels based local reconstruction which
could eliminate noise. More interestingly, when the ERS based
superpixel segmentation provides poor results where different
groundtruth objects are clustered into the same superpixel

such as the area of small circle in Fig. 4(k,l) and the area
of big circle in Fig. 6(k,l), the proposed S3-PCA could
still provide satisfactory classification results compared to
SuperPCA, possibly because the supplementary features based
on global PCA could be discriminative. This phenomenon is
very prominent in the University of Pavia data where different
groundtruth objects are typically mixed together, as the optimal
number of superpixles is set to 30. Furthermore, S3-PCA
shows promising accuracy in the small regions with limited
samples, such as the area of big circle in Fig. 4(k,l) and the
area of small circle in Fig. 6(k,l), which demonstrates the
superiority of the proposed model. Table III-IV show the detail
of classification results based on different DR models and
SVM when the training data of each class T = 30. Obviously,
the proposed method S3-PCA achieved the best performance
in terms of OA, AA and Kappa in the two data sets. The
comparison of training times are also provided in the tables.
It’s worth noting that all the data including the unlabeled
samples are firstly processed by the unsupervised DR models
followed by the train-test splitting, which correspond to 21025
and 207400 samples for the two HSIs data. Consequently, the
proposed S3-PCA is more time-consuming than SuperPCA,
because the superpiexls based local construction takes time.

To further verify the proposed S3-PCA, we randomly
choose T = 5, 10, 20, 30, 40, 50, 60 samples from each class
to be the training data with the remaining to be the testing
data in Indian Pines and University of Pavia data to show the
changes of OAs when the number of training data increases.
Table V shows the results from different approaches, where
S3-PCA achieves the highest OA than other comparative
models especially in the case of limited training data. For
example, when T = 5, S3-PCA can achieve 3.22%, 9.34%
improvements compared to SuperPCA in the two HSIs data.

V. CONCLUSION

In this paper, we propose S3-PCA which uses the super-
pixel based local reconstruction for HSIs denoising plus the
global-local and spectral-spatial feature extraction. It turns out
that the new method can extract effective features for HSIs
classification especially when dealing with pixels in some
small homogeneous regions with noise and in some large
homogeneous regions with mixed groundtruth objects. With
the superpixel segmentation technique local spatial structures
of HSIs can be extracted, then superpixel based spatial nearest
neighbor reconstruction for each pixel in every homogeneous
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(a) Original (b) Ground Truth (c) RAW(76.18) (d) PCA(76.75) (e) LPP(90.96) (f) NPE(87.71)

(g) LNSPE(89.77) (h) LPNPE(91.51) (i) NWFE(90.50) (j) LFDA(85.08) (k) SuperPCA(90.96) (l) S3-PCA(95.95)

Fig. 6: Classification maps of the University of Pavia data from different models. (a) first PCA of original HSI. (b) Ground
Truth. (c) Raw pixel. (d) PCA. (e) LPP. (f) NPE. (g) LNSPE. (h) LPNPE. (i) NWFE. (j) LFDA. (k) SuperPCA. (l) S3-PCA.

region is introduced to filter HSIs with noise elimination.
Furthermore, given the fact that the low-dimensional features
based on typical PCA could also provide global information
of HSIs, we fuse the global features from global PCA and
local features from SuperPCA, leading to the global-local
and spectral-spatial feature. Experiments on two HSIs data
have demonstrated that the proposed S3-PCA outperforms the
classical and state-of-the-art feature extraction methods.

For the future work, how to automatically determine the
optimal number of superpixels for superpixels segmentation
technique should be addressed. A possible solution could be
to initially set a large number of superpixels and then to
adaptively combine the similar superpixel blocks. Also, the
superpixels based local reconstruction has proven to be an
effective filter to denoise HSIs, which can be integrated into
other classification methods such as SVM and deep learning
models as an effective data preprocessing approach.
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