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Abstract—Dimensionality reduction (DR) is important for
feature extraction and classification of hyperspectral images
(HSIs). Recently proposed superpixel-based DR models have
shown promising performance, where superpixel segmentation
techniques were applied to segment an HSI and then DR models
like principal component analysis (PCA) or linear discriminant
analysis (LDA) were employed to extract the local and/or global
features. However, superpixelwise PCA based local features are
unsatisfactory because PCA aims to extract features with high
variance, which could be inefficient in superpixels with mixed
objects or strong noise/outliers. In addition, superpixelwise un-
supervised LDA based global features may neglect local (spatial-
contextual) information. To address these issues, we propose a
new spectral-spatial and superpixelwise unsupervised LDA (S3-
ULDA) model for unsupervised feature extraction from HSIs.
Specifically, the HSI is first segmented into various superpixels
with pseudo labels. Then, superpixel based local reconstruction
for HSI denoising is conducted. Next, superpixelwise unsuper-
vised LDA (SuperULDA) is performed on both the original HSI
and locally reconstructed data to extract global features. Then,
superpixelwise unsupervised local Fisher discriminant analysis
(SuperULFDA) is developed for local feature extraction, where
each superpixel and its adjacent superpixels (along with their
pseudo-labels) are fed into local Fisher discriminant analysis
(LFDA) to extract local features. The superpixel-level local
manifold structures can be effectively modeled by the proposed
SuperULFDA. Finally, by fusing the extracted global and local
features, novel global-local and spectral-spatial features can be
obtained. Our experimental results on several benchmark HSIs
demonstrate the superiority of the proposed method over state-
of-the-art methods. The code of the proposed model is available
at https://github.com/XinweiJiang/S3-ULDA.

Index Terms—Hyperspectral images (HSIs), superpixel seg-
mentation, principal component analysis (PCA), linear discrim-

This work was supported by the Natural Science Foundation of Hubei
Province under Grant 2021CFB557, the National Natural Science Founda-
tion of China under Grant 62106241, 61973285 and Fundamental Research
Founds for National University, China University of Geosciences (Wuhan).
(Corresponding author: Xinwei Jiang)

P. Lu, X. Jiang, Y. Zhang and Z. Cai are with the School of Computer
Science, and also with Hubei Key Laboratory of Intelligent Geo-Information
Processing, China University of Geosciences, Wuhan 430074, China (e-
mail: hello-lpy@qq.com, ysjxw@hotmail.com, yszhang.cug@gmail.com, zh-
cai@cug.edu.cn ).

X. Liu is with the School of Automation, and also with the Hubei
Key Laboratory of Advanced Control and Intelligent Automation for Com-
plex Systems, China University of Geosciences, Wuhan 430074, China (e-
mail:xbliu@cug.edu.cn).

J. Jiang is with the School of Computer Science and Technology, Harbin In-
stitute of Technology, Harbin 150001, China (e-mail:jiangjunjun@hit.edu.cn).

A. Plaza is with the Hyperspectral Computing Laboratory, Department
of Technology of Computers and Communications, Escuela Politecnica,
University of Extremadura, 10003 Caceres, Spain (e-mail: aplaza@unex.es).

inant analysis (LDA), dimensionality reduction (DR), spectral-
spatial features.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain abundant
spectral bands that greatly assist classification tasks [1].

However, accurate HSI classification is challenging due to the
relatively small number of labeled samples available and the
high dimensionality of spectral features, which leads to the
problem called ’curse of the dimensionality’ or ’Hughes phe-
nomenon’ [2]. Many dimensionality reduction (DR) methods
have been designed to mitigate this problem by removing noise
and extracting lower-dimensional features from HSIs.

Generally speaking, DR models can be divided into two
categories: feature selection and feature extraction. The for-
mer try to pick a representative subset of features from the
original high-dimensional observations [3], while the latter
transform the observed data to a low-dimensional subspace
[2]. As feature selection is often sub-optimal compared to
feature extraction [2], we focus on feature extraction models
in this paper. According to the availability of labeled samples,
feature extraction algorithms can be roughly divided into
unsupervised and supervised models. Principal component
analysis (PCA) is a classic unsupervised DR model which
aims at finding the projection directions along which the
data have the maximum variance. Variants of PCA include
orthogonal total variation component analysis (OTVCA) [4]
and Tensor PCA [5]. However, facing the complex nonlinear
relationships between high-dimensional spectral features and
the projected low-dimensional features is challenging for the
aforementioned methods. As a result, many nonlinear DR
models have been introduced for effective feature extraction
from HSIs, including manifold learning techniques such as
neighborhood preserving embedding (NPE), locality preserv-
ing projection (LPP) [2], local pixel NPE (LPNPE) [6], local
neighborhood structure preserving embedding (LNSPE) [7]
and laplacian regularized collaborative representation projec-
tion (LRCRP) [8]. In contrast, supervised DR models as linear
discriminant analysis (LDA) [2] project the high-dimensional
spectral features into a low-dimensional subspace where the
data have maximum inter-class distance and minimum intra-
class separation. To address the limitations of LDA, which
does not consider the local manifold structures embedded into
the observations, models like nonparametric weighted feature
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extraction (NWFE) [2], local Fisher discriminant analysis
(LFDA) [9], multistructure unified discriminative embedding
(MUDE) [10], superpixel-based spatial-spectral dimension re-
duction (SSDR) [11] and various sparse or collaborative graph-
based discriminant analysis methods have been also introduced
[12]. Also, there are some semisupervised DR models which
try to simultaneously use the few labeled data and numerous
unlabeled data [13].

Although the aforementioned methods have been successful
in the task of extracting features from HSIs, the performance
of these models could be compromised by their sensitivity
to noise and also by the fact that they disregard spatial
information [14]–[16]. To address this issue, typical image
filtering models such as mean, Gabor, and propagation filters
[15], [17] have been adopted to denoise HSIs and extract
spatial features with physical meaning.

Also, many deep learning models have been developed to
extract hierarchical spectral-spatial features for HSI classifi-
cation. For example, convolutional neural networks (CNNs)
and their 3D version (3DCNNs) have been proposed to
simultaneously extract the spatial and spectral information
from HSIs with 3D convolutions [18]. Inspired by graph
convolutional networks (GCNs), which can naturally model
long-range spatial relations in HSIs, the minibatch GCN
(miniGCN) was fused with CNNs to extract effective spectral-
spatial features and conduct end-to-end classification, leading
to the so-called fusion network (FuNet) [19]. To further
improve the performance of GCN, the superpixel-based graph-
in-graph (GiG) model was introduced into GCN, leading to
GiG convolutional network (GiGCN), which could extract
effective local and global features for HSI classification [20].
Hypergraph convolution and high-order structure preservation
were introduced in structure-preserved hyper GCN (SPHGCN)
[21], which could achieve more discriminative features from
multiple pixel nodes. To further boost the performance of
deep learning models, various deep learning models were
fused. For example, attention multihop graph and multi-
scale convolutional fusion network (AMGCFN) were pro-
posed to fuse multiscale CNN and multihop GCN to extract
the multilevel information of HSIs [22]. A global spatial
feature representation subnetwork and a dual-view spectral
aggregation subnetwork were fused in dual-view spectral
and global spatial feature fusion network (DSGSF) [23] to
learn the discriminative spatial-spectral features. Deep high-
order tensor convolutional sparse coding (DHTCSCNet) [24]
tried to use tensor based deep feature extraction network to
extract combined features which incorporated shallow, deep,
spectral, and spatial features. Also, self-supervised learning
techniques such as masked autoencoder were introduced in
masked auto-encoding spectral–spatial transformer (MAEST)
[25] and spectral–spatial masked transformer (SS-MTr) as well
as its variant contrastive SS-MTr (C-SS-MTr) [26]. However,
the high dimensionality of spectral features and the complex
spatial structures in HSI data may compromise the perfor-
mance of the filtering models, notwithstanding the fact that a
relatively large amount of labeled data (along with a laborious
and time-intensive hyperparameter tuning phase) is needed for
training these deep learning models.

In contrast, many superpixel-based shallow spectral-spatial
feature extraction models have been developed which exhibit
promising performance in terms of accuracy and complexity
[27], [28]. For example, entropy rate superpixel (ERS) seg-
mentation [29] was applied for HSI segmentation, followed
by PCA-based local feature extraction in each homogeneous
superpixel block, which results in the superpixelwise PCA
method (SuperPCA) [30]. To further boost the performance
of SuperPCA, superpixel-based local reconstruction for HSI
denoising and PCA-based global-local and spectral-spatial
feature extraction were introduced in the spectral-spatial and
superpixelwise PCA method (S3-PCA) [16]. Motivated by the
exploitation of pseudo-labels from superpixel segmentation,
the flexible Gabor-based superpixel-level unsupervised LDA
(FG SuULDA) [15] was proposed to conduct unsupervised
global feature extraction. To further consider local/nonlocal
spatial–spectral correlation information among/between su-
perpixels, the superpixel-level hybrid discriminant analysis
(SHDA) [31] was introduced based on pseudo-labels of su-
perpixels and unsupervised LDA. However, the superpixel-
level global discriminant analysis based on superpixels could
be inaccurate when the superpixels include mixed objects
or noise/outliers. Additionally, superpixel-level local graph-
based LDA could also be ineffective, mainly because the
global and local discriminant analysis models are conducted
simultaneously, leading to the extraction of global features
that could decrease the effectiveness of the local model.
Recently, superpixel-based feature extraction techniques have
been reviewed [28] and it is acknowledged that superpixelwise
PCA based local features in SuperPCA and S3-PCA could
be not good enough for accurate HSI classification, mainly
because the application of the classic PCA to each superpixel
is dominated by spectral features with high variance, which
could fail to characterize superpixels with mixed objects or
strong noise/outliers. In comparison, unsupervised LDA based
global features in FG SuULDA and SHDA could also be
unsatisfactory due to the fact that they neglect the local
(spatial-contextual) information in HSIs.

To address these issues, in this paper we propose a new
unsupervised DR model called spectral-spatial and superpixel-
wise unsupervised LDA (S3-ULDA) which extracts effective
global-local and spectral-spatial features through superpixel-
based unsupervised LDA and LFDA models. Specifically, we
first conduct superpixel segmentation on the HSI, followed
by superpixel-based local reconstruction for HSI denoising.
Then, we simultaneously make use of the original and locally
reconstructed HSI data to extract low-dimensional global fea-
tures based on unsupervised LDA. Next, unsupervised LFDA
with pseudo-labels of adjacent superpixels is performed to
conduct unsupervised local feature extraction on a superpixel-
by-superpixel basis. Compared to PCA-based local feature ex-
traction in SuperPCA and S3-PCA, and to unsupervised LDA-
based global feature extraction in SHDA, the extracted local
features based on the proposed unsupervised LFDA are more
informative, mainly because superpixel-level local features can
be directly extracted and our new model can effectively fit
the local multimodality of data in the adjacent superpixels
inherited from classic LFDA. The main contributions of the
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proposed models are as follows:

1) A novel unsupervised feature reduction model (Supe-
rULDA) is proposed to extract global features from HSIs
based on both the original and locally reconstructed data,
as well as the pseudo-labels of superpixels provided by
ERS. By simultaneously using the two data sources, the
extracted global features are more discriminative.

2) To extract effective local features from HSIs, a novel
unsupervised feature reduction model (SuperULFDA)
is conducted locally on each superpixel along with
its adjacent superpixels as well as the corresponding
pseudo-labels of superpixels. By performing the new
model on a superpixel-by-superpixel basis, the extracted
superpixel-level local features could effectively model
the local spatial structures of the HSI and then provide
discriminative local features.

3) To further improve the discrimination of the extract
features, the global-local and spectral-spatial features are
obtained by fusing the obtained global and local features,
leading to the proposed S3-ULDA which significantly
improves the quality of the learned feature representation
and thus benefits the downstream classification tasks.

The rest of the paper is organized as follows. Section II
reviews some related works. Section III describes the proposed
method. Section IV provides experimental results and analy-
ses. Section V concludes the paper with some remarks and
hints at plausible future research lines.

II. RELATED WORKS

In this section, we briefly some methods that are directly
related with our new approach, including entropy rate super-
pixel (ERS) segmentation, PCA and SuperPCA (unsupervised
DR models), LDA and LFDA (supervised DR models).

A. Entropy Rate Superpixel (ERS) Segmentation

Superpixel segmentation aims to segment the image into
homogeneous regions (also termed superpixel blocks) that
share similar properties. In the field of HSI processing, ERS
is a popular superpixel segmentation algorithm. It represents
the HSI by a graph G = (V,E), where the set of vertices V
corresponds to the pixels in the HSI and the set of edges
E denotes the pairwise similarities of vertices. ERS tries
to pick a subset of edges A ⊆ E such that the obtained
graph G∗ = (V,A) consists of K connected sub-graphs. The
objective function of ERS is defined by

A∗ = argmax
A

Tr {H(A) + αB(A)} , s.t.A ⊆ E, (1)

where H(A) is an entropy rate function aimed to obtain
homogeneous and compact clusters, B(A) is a balancing term
to obtain clusters with similar size, and α is a balancing
parameter. A greedy heuristic algorithm can be applied to
solve Eq. (1). ERS has been successfully adopted to identify
spatially homogeneous regions in HSIs [15], [16], [30].

B. PCA and SuperPCA

PCA is a classic DR algorithm which tries to obtain low-
dimensional features with maximum variance. Due to its
simplicity and effectiveness, it has been widely used for HSI
data pre-processing and feature extraction. Given a set of high-
dimensional observations X = {x1,x2, ...,xN} ∈ RB×N

with dimensionality B and a number of samples N , PCA aims
to find low-dimensional features H = P TX with projection
matrix P ∈ RB×d by maximizing the total variance of the
projection

P ∗ = argmax
P

Tr(PTCov(X)P ), s.t.P TP = I, (2)

where Cov(X) = 1
NXXT is the covariance matrix of

the observation. The optimization of PCA can be performed
by selecting the eigenvectors corresponding to the top−d
eigenvalues to form the projection matrix P .

SuperPCA first performs ERS to obtain homogeneous super-
pixels made up of spatially similar pixels, and then performs
PCA on each superpixel to extract local spectral-spatial fea-
tures. However, it only extracts local features without consider-
ing global information. To handle this issue, S3-PCA was pro-
posed to perform superpixel-based local reconstruction for HSI
denoising plus extraction of PCA-based global features along
with superpixelwise, PCA-based local features for global-
local and spectral-spatial feature extraction, achieving better
performance than SuperPCA. However, the superpixelwise
PCA-based local features are not enough for accurate HSI
classification because the application of the classic PCA to
each superpixel is dominated by spectral features with high
variance. In the case of superpixels with mixed objects or
strong noise/outliers, both PCA and SuperPCA may provide
unsatisfactory features.

C. LDA and LFDA

As a classic supervised DR model, LDA makes use of
labels to extract more discriminative features than PCA. LDA
finds the projection matrix P by maximizing the between-
class variance and minimizing the within-class variance of the
projection. Given a set of observations X = {xn} ∈ RB×N ,
along with the corresponding labels L = {cn}(n = 1, ..., N),
cn = {1, 2, ..., C}, LDA finds a projection matrix P to obtain
low-dimensional features H = P TX with the objective
function

P = argmax
P

(
P TSbP

P TSwP
) with (3)

Sw =

C∑
c=1

nc∑
j=1

(xc
j − uc)(xc

j − uc)
T
, (4)

Sb =

C∑
c=1

(uc − u)(uc − u)
T
,

where Sw is the within-class scatter matrix, Sb is the between-
class scatter matrix, nc and xc

j are the number of samples
belonging to class c and the j-th sample in the c-th class,
respectively, uc denotes the mean vector of the c-th class
and u denotes the mean vector of the whole data set X .



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

The optimization of LDA can also be transformed to solve
an eigendecomposition problem.

Although LDA can find discriminative features, these fea-
tures are low-dimensional (with dimensionality up to C−1). In
addition, LDA only focuses on the global information, without
considering the local (spatial-contextual) information. If there
are multiple streams and multiple categories in the observation,
LDA may be unable to find effective features for classification.
To address these issues, LFDA was introduced by fusing LDA
and LPP. The objective function of LFDA is similar to that of
LDA, with two differences: the redefinition of the local within-
class scatter matrix S̃

w
, and the redefinition of the between-

class scatter matrix S̃
b

S̃
w

=
1

2

N∑
i,j=1

W̃w
i,j(xi − xj)(xi − xj)

T
, (5)

S̃
b
=

1

2

N∑
i,j=1

W̃ b
i,j(xi − xj)(xi − xj)

T
,

with

Ai,j = exp

(
−||xi − xj ||22

δ2

)
(6)

W̃w
i,j ≡

{
Ai,j/nc if label(xi) = label(xj) = c

0 if label(xi) ̸= label(xj)

W̃ b
i,j ≡

{
Ai,j(1/N − 1/nc) if label(xi) = label(xj) = c

1/N if label(xi) ̸= label(xj)

where the parameter δ controls the ’decay’ of the affinity.
LFDA can effectively retain the local multimodality of data

from the same class and address the issue that LDA only
focuses on the global structure of the observations.

Interestingly, LDA has been successfully extended for un-
supervised feature extraction from HSIs by adopting LDA
and pseudo-labels of superpixels in [15]. The resulting
FG SuULDA method has shown promising results. Although
a 3D flexible Gabor transformation was introduced to enhance
spatial features, its performance may be unsatisfactory due to
the lack of local feature representation. To address this issue,
superpixel-level hybrid discriminant analysis was introduced
in [31], but the resulting SHDA model may be also ineffective
because the global and local discriminant analysis models are
conducted simultaneously, resulting in the global features that
may decrease the effectiveness of local feature representation.

III. PROPOSED METHOD

In this section, we introduce the proposed spectral-spatial
and superpixelwise unsupervised LDA (S3-ULDA) method for
feature extraction and classification of HSIs. As it can be seen
from the flowchart in Fig. 1, PCA is first utilized to reduce
the dimensionality of the HSI, and then the first principal
component is fed to the ERS image segmentation model to
obtain multiple homogeneous superpixel blocks, where pixels
in each superpixel belong to the same class (with pseudo-
labels provided by ERS). Secondly, in order to denoise the
HSI, we locally reconstruct each pixel in every superpixel by
using their S nearest neighbors within the same superpixel.

Thirdly, we use unsupervised LDA and pseudo-labels from
ERS to global feature extraction from the HSI, where the
original and locally reconstructed pixels are simultaneously
adopted to construct the within-superpixel scatter matrix and
the between-superpixel scatter matrix in the LDA framework,
leading to superpixelwise unsupervised LDA (SuperULDA).
Next, to extract effective local features from the HSI, we
propose a superpixelwise unsupervised LFDA (SuperULFDA)
where each superpixel (along with its adjacent superpixels
and pseudo-labels) are modeled by means of an unsupervised
LFDA to obtain local features from the HSI (on a superpixel-
by-superpixel basis). The application of unsupervised LFDA
on local areas of the HSI can effectively fit the local multi-
modality of samples in local superpixels and address the issue
that LDA only focuses on global structures. As a result, the lo-
cal features extracted by the proposed SuperULFDA are more
effective for classification than those provided by S3-PCA
[16] and SHDA [31]. Finally, by fusing the global features
from SuperULDA and the local features from SuperULFDA,
the proposed S3-ULDA can obtain effective global-local and
spectral-spatial features.

Let us denote an HSI data set by X3 ∈ RM×N×B , where
M , N and B are the width, height, and number of spectral
bands, respectively. Typically, we reshape a HSI data cube into
a matrix X = {x1,x2, ...,xMN} ∈ RB×MN , in which each
xi corresponds to a pixel. We first perform ERS superpixel
segmentation to segment the whole HSI into K superpixels,
denoted by Xk = {xk

1 ,x
k
2 , ...,x

k
nk

}, (k = 1, ...,K), where
xk
i and nk are the i-th pixel and the number of the pixels in

the k-th superpixel, respectively. In addition, with superpixel-
based local reconstruction, we can obtain the denoised HSI
data X∗ = {x∗

1,x
∗
2, ...,x

∗
MN}, in which each x∗

i corresponds
to the locally reconstructed pixel of xi in the original HSI data.
Similarly, we use X∗k to denote all the pixels of the k-th
locally reconstructed superpixel, corresponding to superpixel
Xk in the original HSI data. The goal of feature extraction is
to obtain effective, low-dimensional, spectral-spatial features
H = P TX with the optimal projection matrix P ∈ RB×d,
where d is the dimensionality of the reduced space.

As superpixel-based local reconstruction in S3-PCA can be
used to denoise HSI data with good results, we adopt such
method in this paper. However, different from S3-PCA (where
only the locally reconstructed data are employed in the sub-
sequent steps), we exploit both the locally reconstructed data
and the original data. Specifically, after ERS-based superpixel
segmentation, each pixel of the HSI is locally reconstructed by
its surrounding S neighboring pixels in the same superpixel
block. For the i-th pixel xk

i in the k-th superpixel, its S
nearest spatial neighbors belonging to the same superpixel
are {xn1

i , ...,xnS

i } and we can obtain the reconstructed data
X∗ = {x∗k

i }k=1,...,K
i=1,...,MN by

x∗k
i =

S∑
j=1

wj × x
nj

i , wj =
exp(−||xk

i − x
nj

i ||22/2t2)
δ2

, (7)

where t = (1/S)
∑S

j=1 ||xk
i − x

nj

i ||22 , δ =∑S
j=1 exp(−||xk

i − x
nj

i ||22/2t2) , and wj is defined as
the similarity weight between xk

i and x
nj

i .
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Fig. 1. Outline of the proposed S3-ULDA method.

A. SuperULDA-based Global Feature Extraction
After the superpixel-based local reconstruction, we ex-

tract the global spectral–spatial features from the HSI by
the proposed SuperULDA. Compared to typical PCA-based
feature extraction, LDA provides more discriminative features
by using label information. However, for unsupervised HSI
feature reduction tasks without labels, LDA cannot be adopted.
Inspired by the recently proposed FG SuULDA, where classic
LDA and the pseudo-labels provided by superpixel segmen-
tation were adopted for unsupervised feature extraction, we
simultaneously make use of the locally reconstructed data and
the original data to conduct unsupervised feature extraction
based on LDA. Our new model can extract effective global
features from high-dimensional and noisy HSI data.

To efficiently make use of the superpixel-based local recon-
struction and pseudo-labels, we extend LDA to utilize both
the original data X and the locally reconstructed data X∗

to globally calculate the within-superpixel scatter matrix and
the between-superpixel scatter matrix. Let us denote the mean
vector uk of the k-th superpixel and the mean vector of the
whole HSI u by

uk =
1

nk

nk∑
i=1

xk
i , u =

1

M ×N

K∑
k=1

nk∑
i=1

xk
i . (8)

In addition, we can similarly define the mean vector of the
k-th reconstructed superpixel u∗k and the mean vector of the
whole reconstructed HSI u∗ in the same way. Based on the
above notations, the objective function of SuperULDA is

Pg = argmax
Pg

(
Pg

TSg
bPg

Pg
TSg

wPg

), (9)

where Pg denotes the projection matrix, S′
w is the global

within-superpixel scatter matrix and S′
b is the global between-

superpixel scatter matrix.
Different from FG SuULDA, in the proposed SuperULDA

the original and locally reconstructed data are simultaneously

utilized to globally derive the within-superpixel scatter matrix
Sg
w and the between-superpixel scatter matrix Sg

b in the LDA
framework. Mathematically, Sg

w and Sg
b can be redefined by

Sg
w =

K∑
k=1

(
nk∑
i=1

(xk
i − uk)(xk

i − uk)
T
+ (10)

nk∑
i=1

(x∗k
i − u∗k)(x∗k

i − u∗k)
T

)
,

Sg
b =

K∑
k=1

nk(u
k − u)(uk − u)

T
+ (11)

K∑
k=1

nk(u
∗k − u∗)(u∗k − u∗)

T
,

where Sg
w depicts the distances between pixels in the same

superpixel and the mean vector, and Sg
b measures the distances

between mean vectors of different superpixels. It is expected
that the elements of Sg

w are as small as possible, so that the
samples from the same superpixel can be closer to each other,
while the elements of Sg

b are as large as possible, so that the
pixels from different superpixels are far away from each other.

The solution of the proposed SuperULDA can be found by
solving the following eigendecomposition problem

Sg
w

−1Sg
bPg = λPg (12)

The eigenvectors corresponding to the largest d eigenvalues
are used to construct the projection matrix Pg ∈ RB×d, which
will be used to extract the global spectral–spatial feature Hg

as follows

Hg = Pg
TX∗, (13)

where X∗ is the HSI data denoised by superpixel-based local
reconstruction.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

…
…

Unsupervised LFDA

Dimension-reduced 
local feature

…
…

…
…

Local data from each 
superpixel and its adjacent 

superpixels

Superpixel based 
locally 

reconstructed HSI
don’t 
care

don’t 
care

Fig. 2. Outline of the proposed SuperULFDA for local feature extraction on a superpixel-by-superpixel basis. For each superpixel, the local data (consisting
of the superpixel and its adjacent superpixels, along with the pseudo-labels of the superpixels) are fed into unsupervised LFDA to extract local features.

B. SuperULFDA-based Local Feature Extraction

SuperULDA is designed to extract effective global features,
but it ignores the local (spatial-contextual) structures in HSIs
and can only reduce the dimensionality of low-dimensional
features up to K−1, where K is the number of superpixels. To
handle these issues, the SuperULFDA framework (illustrated
in in Fig. 2) is proposed to extract local features on a
superpixel-by-superpixel basis, where the local data from each
superpixel and its adjacent superpixels (along with the pseudo-
labels of the superpixels) are fed into unsupervised LFDA for
local feature extraction. LFDA can manage the multimodality
of superpixels in the HSI data, where samples in different
superpixels are separated and far-apart samples belonging to
the same class are made close. Just as an example, for the 14-
th superpixel in Fig. 2 in case its adjacent (13-th and 15-th)
superpixels belong to the same class, LFDA could effectively
group them together, because LFDA does not care about the
similarity between the 13-th and 15-th superpixels. Moreover,
LFDA addresses the issue that LDA only focuses on the
global structures with a limitation on the number of reduced
features (up to K − 1, where K is the number of adjacent
superpixels). Thanks to the above advantages of LFDA, the
proposed SuperULFDA can effectively extract local features
by considering superpixel-level local structures.

Let us denote by k = 1, 2, ...,K the pseudo-labels of
superpixels provided by ERS. For each locally reconstructed
superpixel X∗k [with pseudo-label PL(X∗k) = k], where nk

0

is the number of pixels, its adjacent superpixels are given by
X∗k

1 ,X∗k
2 , ...,X∗k

S , with nk
1 , n

k
2 , ..., n

k
S pixels. The number

of pixels in the k-th superpixel (along with its adjacent
superpixels) is Nk = nk

0 + nk
1 + nk

2 + ... + nk
S . Let A be

the similarly matrix with the (i, j)-th element representing the
similarity between x∗

i and x∗
j . The objective function of the

proposed SuperULFDA for each superpixel and its adjacent
superpixels is

Pl = argmax
Pl

[
tr
(
(Pl

TSl
wPl)

−1Pl
TSl

bPl

)]
, (14)

where Pl ∈ RB×d is the projection matrix, and the local
within-superpixel scatter matrix Sl

w and the local between-
superpixel scatter matrix Sl

b are defined in Eq. (15) based on
the locally reconstructed data X∗ as

Sl
w =

1

2

Nk∑
i,j=1

W̃w
i,j(x

∗
i − x∗

j )(x
∗
i − x∗

j )
T
, (15)

Sl
b =

1

2

Nk∑
i,j=1

W̃ b
i,j(x

∗
i − x∗

j )(x
∗
i − x∗

j )
T
, (16)

with

Ai,j = exp

(
−
||x∗

i − x∗
j ||22

δ2

)

W̃w
i,j ≡

{
Ai,j/n

k
s if PL(x∗

i ) = PL(x∗
j )

0 if PL(x∗
i ) ̸= PL(x∗

j )

W̃ b
i,j ≡

{
Ai,j(1/Nk − 1/nk

s) if PL(x∗
i ) = PL(x∗

j )
1/Nk if PL(x∗

i ) ̸= PL(x∗
j )

and δ being a parameter that controls the ‘decay’ of the affinity.
The solution of the proposed SuperULFDA is similar to

that of classical LFDA, i.e., by solving the generalized eigen-
decomposition problem in Eq. (12). Once the projection matrix
Pl is optimized, the local spectral–spatial features with respect
to the samples in the k-th superpixel can be learnt by

Hk
l = Pl

TX∗k, (17)

and then the local spectral–spatial features of the HSI (Hl)
can obtained by aggregating all the superpixels as follows:
Hl = {Hl

1,H2
l , ...,H

K
l }.

Compared to SHDA, where the local structures represented
by superpixel-level local graphs are considered in the unsu-
pervised LDA framework (along with superpixel-level global
graphs), the proposed SuperULFDA directly extracts local
features on a superpixel-by-superpixel basis.
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C. S3-ULDA-based Global-Local and Spectral–spatial Fea-
ture Extraction

The global features(Hg) from SuperULDA and the local
features (Hl) are fused by concatenating them along the
feature dimension, leading to a set of global–local and spec-
tral–spatial features (Hs) which is simply defined as follows

Hs = [Hg,Hl] ∈ RMN×2d (18)

Specifically, the proposed S3-ULDA adopts SuperULDA
to extract global features and SuperULFDA to extract local
features. We provide the pseudo-code of S3-ULDA in Algo-
rithm 1. As for the complexity of the proposed model, the
superpixel-based local reconstruction costs O(MN), and to
solve Eq. (12) and Eq. (14) requires O(B3), which leads to
O(MN+KB3) for the proposed model with M,N,B,K be-
ing the width, height, number of spectral bands and number of
superpixels, respectively. With parallelization strategies such
as multithreading techniques, the complexity of the proposed
model can be further reduced to O(MN/K + B3) because
solving Eq. (7) and Eq. (14) in superpixel-by-superpixel fash-
ion is independent from each other.

Algorithm 1 The proposed S3-ULDA for unsupervised feature
extraction from HSIs
Input: HSI data X ∈ RM×N×B , number of superpixels K

for ERS-based segmentation, number of nearest neighbors
S for superpixel-based local reconstruction, dimensional-
ity of reduced features d.

1: Apply PCA to the HSI data X to obtain the first principal
component;

2: Conduct ERS-based image segmentation on the feature-
reduced data;

3: for superpixel k = 1, ...,K do
4: for each pixel in the k-th superpixel xk

i (i = 1, ..., nk)
do

5: Conduct superpixel-based local reconstruction using
Eq. (7);

6: end for
7: end for
8: Solve Eq. (12) to obtain the global features Hg ∈ Rd in

the original data X and in the locally reconstructed data
X∗, plus the corresponding pseudo-labels;

9: for each superpixel k = 1, ...,K do
10: Obtain local data from the k-th superpixel X∗

k and
its adjacent superpixels, along with the corresponding
pseudo-labels;

11: Solve Eq. (14) to obtain the local features Hk
l ∈ Rd

with respect to the k-th superpixel using the local data;
12: end for
13: Concatenate the global features Hg and the local features

Hl to obtain a set of global–local and spectral–spatial
features Hs ∈ R2d.

Output: Extracted features Hs.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To demonstrate the effectiveness of the proposed S3-ULDA,
we first conduct a parameter sensitivity analysis to select

the optimal parameters of the proposed model. Then, ab-
lation experiments are conducted to show the performance
of SuperULDA, SuperULFDA and S3-ULDA. Finally, we
compare the proposed S3-ULDA to classical and state-of-the-
art feature extraction techniques, including classic unsuper-
vised models (PCA, NPE), classic supervised models (LFDA,
NWFE), recent unsupervised models (OTVCA [4], LNSPE
[7]) superpixel-based unsupervised models (SuperPCA [30],
S3-PCA [16], FG SuULDA [15], SHDA [31]) and deep learn-
ing models (3DCNN [18], FuNet-C [19], GiGCN [20], DSGSF
[23] and C-SS-MTr [26]). For all the considered DR models,
when dimensionally-reduced features are extracted, an SVM
classifier with radial basis function (RBF) kernel and grid
searched parameters is trained in the learnt low-dimensional
feature space randomly selected training samples from the
labeled data, and the overall accuracy (OA), average accuracy
(AA) and Kappa coefficients corresponding to the prediction
of test data are utilized for objectively comparing the different
models. For all the considered deep learning models, the
classification accuracies are based on the embedded end-to-end
classifiers with the optimal hyperparameters reported in the
original papers. All the comparative deep learning models are
re-trained with the reported optimal hyperparameters on the
training data, which are the same for all comparative models
in experiments to ensure the fairness of comparison. Moreover,
to subjectively compare the proposed models to state-of-the-
art superpixel-based unsupervised DR models, visualization
experiments are performed in the learnt 2D/3D subspace.

TABLE I
THE NUMBER OF SAMPLES FOR EACH CLASS IN INDIAN PINES,

UNIVERSITY OF PAVIA AND HOUSTON 2013 DATA

Indian Pines University of Pavia Houston 2013

Class Names Numbers Class Names Numbers Class Names Numbers

Alfalfa 46 Asphalt 6631 Healthy grass 1251
Corn-notill 1428 Bare soil 18649 Stressed grass 1254

Corn-mintill 830 Bitumen 2099 Synthetic grass 697
Corn 237 Bricks 3064 Trees 1244

Grass-pasture 483 Gravel 1345 Soil 1242
Grass-trees 730 Meadows 5029 Water 325

Grass-pasture-mowed 28 Metal sheets 1330 Residential 1268
Hay-windrowed 478 Shadows 3682 Commercial 1244

Oats 20 Trees 947 Road 1252
Soybean-notill 972 Highway 1227

Soybean-mintill 2455 Railway 1235
Soybean-clean 593 Railway 1233

Wheat 205 Parking Lot 2 469
Woods 1265 Tennis Court 428

Buildings-Grass-Trees-Drives 386 Running Track 660
Stone-Steel-Towers 93

Total Number 10249 Total Number 42776 Total Number 15029

Three data sets are used in the experiments:
• The Indian Pines image was gathered by the airborne

visible infra-red imaging spectrometer (AVIRIS). By
removing the water absorption bands, the number of
effective spectral bands is 200 and the image comprises
145× 145 pixels and 16 classes.

• The University of Pavia image was collected by the
reflective optics spectrographic imaging system (RO-
SIS). The number of effective spectral bands is 103
after removing 12 noisy bands and the image comprises
610× 340 pixels and 9 classes.

• The Houston 2013 image was acquired by the compact
airborne spectrographic imager (CASI) over the campus
of the University of Houston and the neighboring urban
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Fig. 3. Parameter sensitivity analysis for the proposed S3-ULDA on three
data sets.

area. The number of effective spectral bands is 144 and
the image comprises 349× 1905 pixels and 15 classes.

The sample sizes regarding each groundtruth class in the
three data sets are shown in Table I, and we use the same
random seed values while creating training and testing data, so
that we can generate the same training and testing data for all
the models in the experiments to fairly assess and compare the
performance of different models. Each experiment is repeated
ten times and the average results are provided. Methods were
implemented on MATLAB R2016a, PyCharm and executed in
Windows 10 64-bit platform equipped with AMD R7-5800H
CPU, NVIDIA GeForce RTX 3060 GPU and 24-GB RAM.

A. Parameter Sensitivity Analysis

There are a few parameters in the proposed S3-ULDA,
including the number of nearest neighbors S in superpixel-

based local reconstruction, the number of superpixels K in
ERS-based segmentation, and the dimensionality of reduced
features d (in fact, the number of reduced features in the pro-
posed model is 2d as SuperULDA and SuprULFDA provide d
features each. In order to pick the optimal parameters, five-fold
cross-validation is used to conduct the parameter sensitivity
analysis for S ∈ {7, 9, ..., 17},K ∈ {20, 25, 30, ..., 60}, d ∈
{5, 10, 15, 20}. Specifically, we choose 50 labeled samples
from each class, where 80% of these samples are for training
and the remaining samples for validation.

We select the parameters corresponding to the highest
average OAs from the five-fold cross-validation as the optimal
parameters. The experimental results in Fig. 3(a-c) show that
the optimal parameters are d = 10, 15, 15, K = 35, 35, 30 and
S = 17, 13, 15 for the three considered data (Indian Pines,
University of Pavia and Houston 2013), respectively. Also,
we can see that the parameters of the proposed model are
relatively stable for the three data (with different spatial and
spectral resolution), so we anticipate that the same parameters
can be used for other HSIs. In fact, we simply suggest using as
default parameters for the proposed model: d = 15, K = 35
and S = 15. For the SVM classifier, the RBF kernel is
selected with the optimal parameters set to C = 100000 and
γ = 20, 30, 50 for the three data sets, respectively.

B. Ablation Experiments

We conduct ablation experiments to show the effectiveness
of the extracted global, local, and fused global-local features
from SuperULDA, SuprULFDA and S3-ULDA, respectively.
Specifically, to show the effectiveness of the locally recon-
structed data, ablation experiments are conducted for the
proposed models by only using the original (ori), locally
reconstructed (rec) and both the original and locally recon-
structed data (all), which results in the following terminology:

1) SuperULDA(ori), SuperULFDA(ori) and S3-ULDA(ori)
denote models applied to the original HSIs.

2) SuperULDA(rec), SuperULFDA(rec) and S3-
ULDA(rec) refer to models applied to locally
reconstructed HSIs.

3) SuperULDA(all), SuperULFDA(all) and S3-ULDA(all)
refer to models applied to both the original and locally
reconstructed HSIs.

Table II provides an overview of the ablation experiments.
As the proposed SuperULFDA can be utilized to extract
the global features with all superpixels or the local features
with adjacent superpixels on a superpixel-by-superpixel basis,
we further refer to them as global SuperULFDA and local
SuperULFDA, respectively. In contrast, there is no local Supe-
rULDA because SuperULDA cannot be directly used to extract
local features with adjacent superpixels. This is due to the fact
that the number of reduced features is limited to K, i.e., the
number of pseudo-labels of local adjacent superpixels that is
typically less than 5. For the proposed S3-ULDA, consisting
of global SuperULFDA(all) and local SuperULFDA(rec), we
extract the global features by using SuperULFDA on all of
the original and locally reconstructed data, and concatenate to
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TABLE II
OVERVIEW OF ABLATION EXPERIMENTS

Models Unsupervised
LDA

Using
original data

Using
reconstructed data

Unsupervised
LFDA

Using
original data

Using
reconstructed data

With all
superpixels

With superpixels
by superpixels

Fusing the global
and local features

global
SuperULDA(ori) Y Y Y

global
SuperULDA(rec) Y Y Y

global
SuperULDA(all) Y Y Y Y

global
SuperULFDA(ori) Y Y Y

global
SuperULFDA(rec) Y Y Y

global
SuperULFDA(all) Y Y Y Y

local
SuperULFDA(ori) Y Y Y

local
SuperULFDA(rec) Y Y Y

local
SuperULFDA(all) Y Y Y Y

S3-ULDA(ori) Y Y Y Y Y Y Y
S3-ULDA(rec) Y Y Y Y Y Y Y
S3-ULDA(all) Y Y Y Y Y Y Y Y Y
S3-ULDA Y Y Y Y Y Y Y Y

TABLE III
OAS OBTAINED BY DIFFERENT METHODS IN ABLATION EXPERIMENTS (IN ALL CASES, SVM IS USED FOR THE FINAL CLASSIFICATION. BEST RESULTS IN

BOLD.)

Datasets T.N.s/C

Global Local Gloabl-Local

global
SuperULDA(ori)

global
SuperULDA(rec)

global
SuperULDA(all)

global
SuperULFDA(ori)

global
SuperULFDA(rec)

global
SuperULFDA(all)

local
SuperULFDA(ori)

local
SuperULFDA(rec)

local
SuperULFDA(all)

�3-ULDA
(ori)

�3-ULDA
(rec)

�3-ULDA
(all)

�3-ULDA

Indian
Pines

10 65.89% 83.26% 84.10% 55.76% 75.87% 76.56% 83.12% 85.65% 85.83% 83.83% 85.12% 88.13% 87.67%

20 72.23% 90.98% 91.49% 66.03% 84.19% 86.17% 91.30% 93.40% 93.84% 92.34% 93.01% 94.96% 94.95%

30 74.87% 93.45% 94.41% 69.40% 88.27% 89.94% 92.68% 94.77% 95.73% 93.74% 94.96% 96.56% 96.68%

University
of Pavia

10 73.15% 81.63% 86.66% 74.41% 86.51% 84.49% 77.96% 88.63% 79.51% 87.51% 91.63% 93.22% 94.81%

20 76.74% 87.22% 91.16% 79.21% 91.66% 90.25% 84.33% 93.85% 87.67% 92.17% 96.34% 97.27% 98.14%

30 79.59% 90.07% 93.03% 81.10% 93.34% 92.61% 85.73% 95.63% 90.81% 93.91% 97.32% 98.16% 98.69%

Houston
2013

10 64.76% 71.03% 84.63% 74.64% 85.97% 83.35% 69.41% 82.13% 79.96% 83.43% 83.49% 84.85% 86.17%

20 71.74% 78.61% 90.69% 78.99% 90.87% 90.97% 77.82% 89.15% 87.23% 90.09% 89.79% 90.49% 91.33%

30 74.85% 83.07% 93.73% 81.07% 92.95% 93.02% 83.15% 92.72% 91.82% 93.63% 93.09% 94.10% 94.42%

them the local features obtained by using SuperULFDA on the
locally reconstructed data.

Table III shows the obtained classification results when
the number of training samples from each class is set to
T = 10, 20, 30, with the number of superpixels set to
K = 35, 35, 30, and the number of spatial neighbors set
to S = 17, 13, 15 on Indian Pines, University of Pavia and
Houston 2013. The dimensionality of the reduced features for
all the models is set to 30. For the fused S3-ULDA(ori),
S3-ULDA(rec), S3-ULDA(all) and S3-ULDA, d = 15 is
set to be the number of the extracted global and local
features respectively, which leads fused global-local features
with dimensionality of 30. As it can be seen from Table III,
superpixel-based local reconstruction can effectively denoise
the data and then improve the performance of SuperULDA
and SuperULFDA. This can be observed by comparing the
global SuperULDA(ori) and SuperULDA(rec), the global Su-
perULFDA(ori) and SuperULFDA(rec), as well the local Su-
perULFDA(ori) and SuperULFDA(rec) in terms of OAs.

Another important observation is that global Supe-
rULDA(all) significantly outperforms the corresponding global

SuperULDA(ori) and global SuperULDA(rec). Similar re-
sults can be obtained for global SuperULFDA, where global
SuperULFDA(all) outperforms global SuperULFDA(ori) and
global SuperULFDA(rec) in most cases. However, for the
proposed local SuperULFDA, using only locally reconstructed
data appears to be the best solution, because the results
in Table III show that local SuperULFDA(rec) outperforms
local SuperULFDA(ori) and local SuperULFDA(all) in the
last two datasets. This is probably due to the fact that the
superpixel-by-superpixel local feature extraction model (local
SuperULFDA) is sensitive to noise/outliers in the original
data, which could largely compromise the performance of
the local model, especially in the University of Pavia and
Houston 2013 data sets, that comprise high spatial resolution
and lots of mixed objects. Quite opposite, in the Indian Pines
data (with lower spatial resolution, few mixed objects but
many mixed pixels), local SuperULFDA(all) still outperforms
local SuperULFDA(ori) and local SuperULFDA(rec), possibly
because there are many mixed pixels that contain more than
one material type in the low spatial resolution HSI. Overall, we
can conclude that global SuperULDA using both the original
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(a) Ground Truth (b) RAW(69.76) (c) PCA(66.65) (d) NPE(86.28) (e) LNSPE(89.90) (f) NWFE(88.26) (g) LFDA(87.17) (h) OTVCA(88.86) (i) 3DCNN(76.82)

(j) FuNet-C(73.81) (k) GiGCN(91.39) (l) DSGSF(91.40) (m) C-SS-MTr(87.33) (n) SuperPCA(93.84) (o) S3 -PCA(95.29) (p) FG SuULDA(93.74) (q) SHDA(95.53) (r) S3 -ULDA(96.78)

Fig. 4. Classification maps obtained by different models for the Indian Pines image. (a) Ground Truth. (b) Raw. (c) PCA. (d) NPE. (e) LNSPE. (f) NWFE.
(g) LFDA. (h) OTVCA. (i) 3DCNN. (j) FuNet-C. (k) GiGCN. (l) DSGSF. (m) C-SS-MTr. (n) SuperPCA. (o) S3 -PCA. (p) FG SuULDA. (q) SHDA. (r) S3

-ULDA.

(a) Ground Truth (b) RAW(76.18) (c) PCA(76.75) (d) NPE(87.71) (e) LNSPE(89.77) (f) NWFE(90.50) (g) LFDA(85.08) (h) OTVCA(87.79) (i) 3DCNN(79.20)

(j) FuNet-C(85.95) (k) GiGCN(97.30) (l) DSGSF(89.81) (m) C-SS-MTr(93.80) (n) SuperPCA(90.96) (o) S3 -PCA(95.95) (p) FG SuULDA(96.93) (q) SHDA(96.09) (r) S3 -ULDA(98.38)

Fig. 5. Classification maps obtained by different models for the University of Pavia image. (a) Ground Truth. (b) Raw. (c) PCA. (d) NPE. (e) LNSPE. (f)
NWFE. (g) LFDA. (h) OTVCA. (i) 3DCNN. (j) FuNet-C. (k) GiGCN. (l) DSGSF. (m) C-SS-MTr. (n) SuperPCA. (o) S3 -PCA. (p) FG SuULDA. (q) SHDA.
(r) S3 -ULDA.

and locally reconstructed data is optimal for global feature
extraction model, while only using the locally reconstructed
data appears to be the best choice for the local SuperULFDA.
Also, although the global SuperULFDA appears to provide

sub-optimal performance, the local SuperULFDA provides
significantly higher OAs compared to the global SuperULDA
and the global SuperULFDA in all cases. This suggests that
effective local features can be extracted by the local Supe-
rULFDA on a superpixel-by-superpixel basis, because the un-
supervised LFDA can effectively deal with the multimodality
of superpixels and address the issue that unsupervised LDA
only focuses on the global structures of the data. Thus, we fuse
the global SuperULDA(all) and the local SuperULFDA(rec),
leading to the proposed S3-ULDA which outperforms S3-
ULDA(ori), S3-ULDA(rec) and S3-ULDA(all). Although S3-
ULDA(all) could further improve the proposed S3-ULDA in
the Indian Pines data set, it provides worse results than the

proposed S3-ULDA in the other two images due to their higher
spatial resolution (and to the presence of mixed objects).
Thus, the proposed S3-ULDA will be based on the global
features from SuperULDA(all) and the local features from
SuperULFDA(rec) in the following experiments.

C. Model Comparison

In this subsection, we conduct extensive experiments to
compare the proposed S3-ULDA with classical and state-of-
the-art DR models as well as deep learning models as follows,

1) PCA, NPE: They are the classic unsupervised DR mod-
els to conduct spectral feature reduction.

2) LFDA, NWFE: They are the classic supervised DR
models to conduct spectral feature reduction.

3) OTVCA [4], LNSPE [7]: They are the variants of PCA
and NPE for unsupervised spectral feature reduction.
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4) SuperPCA [30]: It uses PCA in each homogeneous su-
perpixel to obtain effective local spatial-spectral features.

5) S3-PCA [16]: It uses superpixels based local recon-
struction to denoise HSIs, and then global features are
extracted by PCA, while local features are obtained by
performing PCA in each superpixel, followed by the
fusion of global and local spatial-spectral features.

6) FG SuULDA [15]: It uses unsupervised LDA to extract
the global features, where the pseudo labels of super-
pixels are considered as the labels of classic LDA.

7) SHDA [31]: It uses unsupervised global and local dis-
criminant analysis models based on the pseudo labels
of superpixels to extract global features by considering
local/nonlocal spatial–spectral correlation information
among/between superpixels.

8) 3DCNN [18]: It uses 3D convolution kernels to extract
the spatial-spectral information and conduct end-to-end
classification.

9) FuNet-C [19]: It fuses minibatch GCN (miniGCN) and
CNNs to extract effective spectral-spatial features and
conduct end-to-end classification.

10) GiGCN [20]: It uses superpixel-based graph-in-graph
model to extract effective features of superpixels and
then superpixel-based GCN is adopted for classification.

11) DSGSF [23]: It fuses a global spatial feature represen-
tation subnetwork and a dual-view spectral aggregation
subnetwork to learn the discriminative spatial-spectral
features and conduct classification.

12) C-SS-MTr [26]: It uses masked autoencoder to pre-train
a vanilla Transformer to learn effective features and
then fine-tune the model with additional contrastive loss,
which brings instance discriminability.

Generally, the comparative methods cover traditional unsuper-
vised as well as supervised DR models, superpixels based
unsupervised DR models, CNN based models, GNN based
models, Transformer based models, which are complete and
sufficient for comparison. For classic models PCA, NPE,
LFDA and NWFE, the default parameters are used. For
OTVCA, LNSPE, SuperPCA, S3-PCA, FG SuULDA and
SHDA, the experimental settings are the same as their original
papers. For deep learning models 3DCNN, Funet-C, GiGCN,
DSGSF and C-SS-MTr, the suggested architectures and the
corresponding hyperparameters settings in the original papers
and source codes are used to conduct comparative experiments.

We first show the classification results when the number of
labeled samples from each class is set to T = 30, with the
numbers of superpixels set to K = 35, 35, 30, the number of
spatial neighbors set to S = 17, 13, 15, and the dimensionality
of reduced features set to d = 10, 15, 15 (2d = 20, 30, 30 for
the fused global-local features) in the Indian Pines, University
of Pavia and Houston 2013 data, respectively. For the Indian
Pines data, if the number of samples of a class is less than
the number of labeled samples T , up to half of all labeled
samples from this class are picked as the training data.

The classification maps obtained for Indian Pines, Univer-
sity of Pavia and Houston 2013 data are provided in Figs. 4, 5
and Fig. S1 in the supplementary material of the paper due to
the oversize of the figures. As can see that the traditional unsu-

pervised DR methods (PCA, NPE) and the classic supervised
DR models (NWFE, LFDA) perform poorly because they
ignore spatial information. In contrast, some state-of-the-art
unsupervised DR algorithms could achieve better performance,
such as LNSPE (which utilizes local manifold structures).
Recently, superpixelwise DR models such as SuperPCA and
S3-PCA have shown outstanding performance for superpixel
segmentation-based spatial information extraction, followed by
PCA-based local spatial-spectral feature extraction for each
superpixel. By further using the pseudo-labels of superpixels,
FG SuULDA and SHDA exhibit promising performance by
adopting unsupervised LDA and superpixel-based local mani-
fold representation for unsupervised global feature extraction.
Although SuperPCA, S3-PCA, FG SuULDA and SHDA pro-
vide high OAs, the proposed S3-ULDA outperforms them.
As shown in the classification maps, the classification errors
denoted by the circles in the classification maps of SuperPCA,
S3-PCA, FG SuULDA and SHDA can be rectified by the
proposed S3-ULDA. Moreover, compared to SHDA (which is
also based on pseudo-labels of superpixels and unsupervised
LDA for global feature extraction, with the consideration
of local manifold structures), the proposed S3-ULDA could
simultaneously extract more effective global and local fea-
tures. Especially, the local feature extraction by the proposed
S3-ULDA is conducted on a superpixel-by-superpixel basis,
which is more effective than SHDA in the areas marked by
rectangular boxes in the classification maps reported in Figs.
4(q, r) and 5(q, r). In addition, although the deep learning
models GiGCN based on superpixels and GCN, plus C-SS-
MTr based on masked autoencoder and Transformer show
outstanding accuracy compared to other deep learning meth-
ods, the proposed S3-ULDA could significantly outperform
them, which demonstrates the effectiveness of the model. The
full classification results in Tables IV, V and VI support
the aforementioned conclusions. Obviously, the proposed S3-
ULDA achieved the best performance in terms of OA, AA,
and Kappa in the three data.

As for the time complexity, the comparison of the train-
ing times for all the models is given in the tables. Since
FG SuULDA needs a series of 3D flexible Gabor filters to
exploit the spatial–spectral features, its complexity is higher
than that of other models. In terms of the proposed S3-
ULDA, the SuperULFDA based local feature extraction on
a superpixel-by-superpixel basis significantly increases the
complexity of the model compared to that of SuperPCA, S3-
PCA and SHDA. However, it is worth noting that the proposed
S3-ULDA can be easily accelerated through parallelization
techniques, because the (time-consuming) local feature ex-
traction model (SuperULFDA) in the proposed S3-ULDA is
conducted in superpixel-by-superpixel fashion, where each
superpixel calculation is independent from others. As shown
in Tables IV, V and VI, with multithreading techniques the
training times of the proposed S3-ULDA can be significantly
reduced (from 12.24s, 483.51s and 2853.65s to 2.48s, 37.39s,
356.74s in the three HSIs, respectively).

To further verify the proposed S3-ULDA, we randomly
choose T = {5, 10, 20, 30, 40, 50, 60} labeled samples from
each class to show the changes in OA as the number of training
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TABLE IV
OA, AA AND KAPPA OBTAINED BY SEVERAL FEATURE EXTRACTION ALGORITHMS (COMBINED WITH THE SVM CLASSIFIER) ON THE INDIAN PINES

DATA SET. BEST RESULTS IN BOLD.

Indian Pines

Class Training Samples PCA NPE LNSPE [7] NWFE [2] LFDA [9] OTVCA [4] 3DCNN [18] FuNet-C [19] GiGCN [20] DSGSF [23] C-SS-MTr [26] SuperPCA [30] S3-PCA [16] FG SuULDA [15] SHDA [31] S3-ULDA
Alfalfa 23 95.65% 100.00% 100.00% 100.00% 100.00% 95.65% 95.65% 95.65% 100.00% 61.90% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Corn-notill 30 50.07% 80.47% 82.12% 79.26% 82.98% 73.39% 75.54% 61.52% 83.05% 87.58% 83.54% 92.85% 90.70% 80.62% 92.06% 97.35%
Corn-mintill 30 69.13% 88.63% 95.75% 90.38% 93.13% 92.13% 68.13% 46.38% 91.20% 80.04% 88.07% 92.50% 99.00% 94.00% 97.88% 89.50%

Corn 30 79.23% 93.72% 91.79% 93.24% 94.69% 85.99% 92.75% 85.99% 100.00% 81.82% 99.58% 95.65% 97.58% 100.00% 95.17% 98.55%
Grass-pasture 30 91.17% 94.70% 92.72% 95.58% 94.26% 91.17% 86.98% 91.17% 92.96% 99.28% 84.06% 99.34% 99.56% 95.58% 89.40% 98.23%

Grass-trees 30 86.14% 98.86% 97.86% 99.00% 99.00% 97.86% 93.43% 95.57% 96.57% 97.09% 96.85% 97.14% 97.14% 97.86% 100.00% 100.00%
Grass-pasture-mowed 14 85.71% 100.00% 100.00% 92.86% 100.00% 92.86% 100.00% 100.00% 100.00% 55.00% 100.00% 92.86% 85.71% 100.00% 92.86% 100.00%

Hay-windrowed 30 86.61% 98.44% 99.55% 98.88% 99.78% 97.54% 96.88% 97.32% 99.79% 99.78% 100.00% 99.55% 100.00% 100.00% 99.78% 99.78%
Oats 10 60.00% 90.00% 90.00% 100.00% 100.00% 100.00% 90.00% 100.00% 55.00% 87.50% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Soybean-notill 30 71.02% 77.39% 83.86% 82.80% 81.53% 83.65% 76.75% 60.62% 71.60% 85.12% 86.32% 83.55% 86.20% 91.93% 85.77% 98.30%
Soybean-mintill 30 46.60% 78.43% 84.95% 81.03% 75.67% 90.10% 61.57% 74.19% 97.92% 96.73% 78.66% 91.59% 94.89% 94.80% 96.12% 94.89%
Soybean-clean 30 68.21% 88.28% 94.49% 92.90% 90.05% 91.47% 72.65% 69.80% 75.72% 80.71% 71.33% 92.72% 95.38% 96.27% 98.93% 92.72%

Wheat 30 97.71% 100.00% 99.43% 100.00% 99.43% 98.86% 99.43% 99.43% 91.71% 93.96% 99.02% 99.43% 99.43% 100.00% 99.43% 99.92%
Woods 30 85.99% 90.85% 92.96% 95.14% 93.20% 93.20% 88.58% 83.32% 99.84% 97.44% 97.87% 99.84% 99.84% 97.81% 98.87% 100.00%

Buildings-Grass-Trees-Drives 30 56.46% 96.07% 99.16% 96.07% 95.79% 91.29% 73.88% 67.70% 98.45% 99.43% 98.19% 98.60% 96.91% 97.19% 99.44% 100.00%
Stone-Steel-Towers 30 98.41% 100.00% 100.00% 98.41% 98.41% 96.82% 100.00% 100.00% 97.85% 72.29% 98.92% 98.41% 98.41% 100.00% 100.00% 100.00%

OA 66.65% 86.28% 89.90% 88.26% 87.17% 88.86% 76.82% 73.82% 91.39% 91.40% 87.33% 93.84% 95.29% 93.74% 95.53% 96.78%
AA 76.76% 92.24% 94.04% 93.44% 93.62% 92.00% 85.76% 83.04% 90.73% 85.98% 92.65% 95.88% 96.30% 96.63% 96.61% 98.04%

Kappa 62.68% 84.43% 88.50% 86.64% 85.42% 87.28% 73.83% 70.04% 90.20% 90.18% 85.70% 92.94% 94.61% 92.85% 94.87% 96.32%
Time (s) 0.07 9.33 26.24 2.48 1.67 36.08 35.11 74.06 68.29 253.12 279.07 0.31 2.23 414.56 8.13 12.24(2.48)

TABLE V
OA, AA AND KAPPA OBTAINED BY SEVERAL FEATURE EXTRACTION ALGORITHMS (COMBINED WITH THE SVM CLASSIFIER) ON THE UNIVERSITY OF

PAVIA DATA SET. BEST RESULTS IN BOLD.

University of Pavia

Class Training Samples PCA NPE LNSPE [7] NWFE [2] LFDA [9] OTVCA [4] 3DCNN [18] FuNet-C [19] GiGCN [20] DSGSF [23] C-SS-MTr [26] SuperPCA [30] S3-PCA [16] FG SuULDA [15] SHDA [31] S3-ULDA
Asphalt 30 78.91% 82.84% 84.87% 87.11% 75.44% 89.38% 77.87% 84.37% 95.42% 94.91% 96.29% 79.64% 93.21% 91.79% 86.82% 99.33%

Bare soil 30 77.24% 90.50% 91.04% 92.75% 87.93% 83.80% 78.61% 87.58% 98.56% 98.97% 89.27% 93.08% 94.65% 99.08% 98.88% 98.07%
Bitume 30 80.04% 88.84% 84.20% 88.06% 72.16% 94.39% 78.78% 76.12% 99.81% 87.63% 95.38% 97.54% 99.81% 98.84% 97.58% 98.26%
Bricks 30 95.02% 91.83% 93.24% 93.05% 95.22% 93.74% 94.86% 98.62% 90.24% 90.45% 97.62% 85.33% 93.47% 92.78% 91.23% 96.04%
Gravel 30 99.92% 100.00% 100.00% 100.00% 100.00% 100.00% 97.41% 99.77% 100.00% 99.09% 98.59% 96.88% 100.00% 100.00% 99.47% 99.85%

Meadow 30 64.69% 83.40% 89.98% 87.00% 85.10% 83.90% 62.69% 81.82% 100.00% 65.25% 98.05% 94.80% 99.68% 100.00% 97.94% 99.84%
Metal sheet 30 83.31% 90.77% 91.92% 92.85% 92.23% 92.31% 89.00% 84.15% 99.42% 70.85% 100.00% 92.38% 98.31% 100.00% 100.00% 99.38%

Shadows 30 53.48% 76.75% 86.34% 82.97% 77.33% 92.94% 79.93% 73.36% 97.23% 96.49% 96.85% 92.55% 99.48% 91.16% 98.08% 97.04%
Trees 30 99.45% 95.09% 95.20% 98.26% 91.49% 99.78% 96.73% 100.00% 81.31% 97.63% 99.79% 95.53% 98.15% 96.95% 90.51% 99.78%
OA 76.75% 87.71% 89.77% 90.50% 85.08% 87.79% 79.20% 85.95% 97.30% 89.81% 93.80% 90.96% 95.95% 96.93% 96.09% 98.38%
AA 81.34% 88.89% 90.75% 91.34% 86.32% 92.25% 83.99% 87.31% 95.83% 89.03% 96.87% 91.97% 97.42% 96.76% 95.61% 98.62%

Kappa 70.11% 83.89% 86.62% 87.48% 80.55% 84.17% 73.09% 81.66% 96.43% 86.84% 91.95% 88.16% 94.68% 95.93% 94.82% 97.86%
Time (s) 0.36 564.24 1679.26 2.26 1.41 313.95 74.05 247.25 366.24 302.82 143.47 0.50 154.02 915.10 74.38 483.51(37.39)

TABLE VI
OA, AA AND KAPPA OBTAINED BY SEVERAL FEATURE EXTRACTION ALGORITHMS (COMBINED WITH THE SVM CLASSIFIER) ON THE HOUSTON 2013

DATA SET. BEST RESULTS IN BOLD.

Houston 2013

Class Training Samples PCA NPE LNSPE [7] NWFE [2] LFDA [9] OTVCA [4] 3DCNN [18] FuNet-C [19] GiGCN [20] DSGSF [23] C-SS-MTr [26] SuperPCA [30] S3-PCA [16] FG SuULDA [15] SHDA [31] S3-ULDA
Healthy grass 30 94.43% 97.54% 97.71% 96.72% 98.36% 95.99% 97.30% 97.54% 88.01% 98.45% 79.86% 90.09% 95.09% 99.75% 85.59% 96.81%
Stressed grass 30 98.77% 98.86% 98.86% 99.10% 97.88% 99.67% 94.11% 99.59% 77.99% 85.22% 88.76% 93.22% 96.81% 87.09% 95.10% 94.69%
Synthetic grass 30 99.70% 96.85% 99.40% 97.15% 98.80% 99.40% 99.25% 99.85% 100.00% 92.97% 98.13% 99.70% 98.35% 98.85% 100.00% 99.85%

Trees 30 95.72% 98.60% 97.54% 98.93% 96.61% 94.56% 97.94% 94.23% 91.80% 98.93% 95.66% 85.83% 97.03% 94.32% 83.53% 90.28%
Soil 30 97.78% 99.34% 98.93% 99.59% 100.00% 99.09% 99.59% 98.93% 100.00% 96.16% 98.95% 95.21% 97.29% 100.00% 96.53% 98.27%

Water 30 98.64% 97.29% 100.00% 99.32% 99.32% 98.31% 90.17% 88.81% 98.15% 98.64% 89.23% 96.61% 97.63% 100.00% 97.63% 96.27%
Residential 30 84.65% 80.94% 97.97% 91.11% 89.66% 92.33% 78.59% 76.66% 93.93% 79.66% 89.20% 86.83% 88.37% 90.15% 89.58% 97.09%
Commercial 30 79.58% 69.77% 90.95% 73.64% 69.11% 73.81% 80.56% 77.10% 87.70% 82.77% 85.61% 71.58% 72.98% 79.16% 92.09% 92.67%

Road 30 76.76% 79.30% 71.83% 76.76% 86.58% 81.83% 79.21% 72.83% 91.61% 84.03% 97.44% 72.67% 77.82% 94.60% 89.85% 78.31%
Highway 30 79.11% 93.48% 83.47% 95.66% 74.60% 96.91% 92.73% 86.63% 99.43% 72.40% 97.64% 97.99% 98.33% 100.00% 98.08% 99.93%
Railway 30 78.42% 93.86% 90.48% 97.01% 81.24% 91.95% 74.11% 76.27% 88.74% 83.38% 97.33% 97.84% 94.85% 92.78% 96.59% 95.68%

Parking Lot 1 30 74.81% 93.52% 93.78% 91.77% 79.38% 92.19% 83.62% 87.86% 87.92% 80.95% 92.86% 75.31% 88.69% 82.71% 97.67% 97.51%
Parking Lot 2 30 54.44% 90.43% 96.01% 87.93% 85.65% 75.63% 93.39% 79.73% 90.19% 47.09% 85.07% 69.48% 87.24% 99.54% 94.99% 88.15%
Tennis Court 30 99.75% 99.50% 92.48% 99.25% 99.50% 100.00% 98.74% 94.97% 100.00% 95.79% 100.00% 97.99% 100.00% 100.00% 99.50% 100.00%

Running Track 30 98.57% 97.14% 98.49% 96.98% 100.00% 98.73% 100.00% 100.00% 100.00% 95.09% 97.58% 98.41% 99.52% 100.00% 100.00% 100.00%
OA 86.88% 91.45% 93.12% 92.69% 89.06% 92.34% 89.34% 87.98% 91.95% 86.03% 92.73% 87.74% 91.71% 93.35% 93.48% 94.64%
AA 87.41% 92.3% 93.96% 93.40% 90.51% 92.69% 90.63% 88.73% 93.03% 86.10% 92.89% 88.59% 92.65% 94.66% 94.45% 95.03%

Kappa 85.81% 90.76% 92.56% 92.09% 88.17% 91.72% 88.48% 91.30% 87.00% 84.89% 92.15% 86.74% 91.03% 92.82% 92.95% 94.20%
Time (s) 0.86 3081.97 9218.79 8.14 2.19 1026.13 56.99 310.68 1412.44 408.34 190.68 9.95 645.26 5407.09 290.83 2853.65(356.74)

TABLE VII
OA OBTAINED BY SEVERAL FEATURE EXTRACTION ALGORITHMS (COMBINED WITH THE SVM CLASSIFIER) WITH DIFFERENT TRAINING SAMPLES ON

THE THREE CONSIDERED DATA SETS. BEST RESULTS IN BOLD.

Datasets T.N.s/C RAW PCA NPE LNSPE [7] NWFE [2] LFDA [9] OTVCA [4] 3DCNN [18] FuNet-C [19] GiGCN [20] DSGSF [23] C-SS-MTr [26] SuperPCA [30] S3-PCA [16] FG SuULDA [15] SHDA [31] S3-ULDA

Indian
Pines

5 44.87%±6.50% 45.47%±5.33% 53.26%±6.42% 55.01%±4.48% 60.08%±2.68% 59.12%±3.75% 54.71%±5.58% 46.73%±3.38% 49.45%±2.63% 77.25%±3.93% 52.03%±5.87% 59.74%±3.94% 63.49%±5.77% 72.05%±5.39% 74.77%±4.31% 80.26%±3.94% 78.97%±3.86%
10 55.77%±3.27% 55.07%±2.87% 71.44%±3.39% 73.73%±2.94% 70.03%±2.52% 64.06%±2.95% 72.95%±2.07% 56.27%±3.89% 58.80%±1.97% 82.69%±3.86% 77.65%±1.56% 74.21%±3.11% 85.75%±3.06% 87.37%±1.26% 83.20%±4.49% 87.64%±2.51% 87.67%±4.27%
20 63.81%±3.37% 62.16%±2.64% 82.84%±1.37% 85.28%±1.42% 85.08%±1.67% 82.48%±2.02% 85.24%±2.52% 69.50%±3.22% 68.59%±2.49% 88.55%±2.05% 87.81%±1.33% 82.99%±2.12% 92.80%±1.46% 94.01%±1.64% 90.85%±1.55% 93.83%±1.46% 94.95%±1.68%
30 68.77%±1.27% 66.24%±0.58% 86.45%±1.91% 88.78%±1.91% 88.86%±1.61% 87.58%±1.14% 88.67%±1.74% 75.33%±1.90% 73.24%±1.15% 90.38%±1.07% 90.73%±0.79% 87.27%±2.00% 94.61%±0.81% 95.79%±0.77% 93.82%±1.13% 95.41%±0.75% 96.68%±1.05%
40 71.64%±1.05% 68.90%±1.06% 88.54%±1.32% 90.60%±1.19% 90.37%±1.48% 89.68%±0.60% 90.27%±1.12% 79.78%±2.97% 77.03%±1.04% 91.52%±1.22% 93.02%±0.69% 91.92%±0.81% 95.33%±0.97% 96.21%±0.90% 95.60%±1.33% 96.06%±5.86% 97.29%±0.72%
50 74.18%±1.20% 70.70%±1.01% 89.95%±1.26% 91.96%±1.15% 91.78%±1.32% 90.97%±0.75% 91.80%±0.95% 81.84%±2.04% 79.08%±1.29% 91.32%±1.49% 94.50%±0.91% 92.14%±1.88% 95.42%±1.02% 96.55%±0.78% 96.64%±0.80% 96.22%±0.54% 97.75%±0.56%
60 75.24%±1.12% 71.79%±1.33% 90.97%±0.72% 93.01%±0.85% 92.52%±0.81% 91.71%±0.91% 93.02%±0.62% 83.37%±1.99% 80.40%±1.66% 91.70%±0.94% 95.77%±0.88% 95.02%±076% 95.72%±0.56% 96.95%±0.61% 97.37%±0.66% 96.50%±0.68% 98.01%±0.51%

University
of Pavia

5 64.59%±5.07% 65.26%±5.14% 68.66%±6.05% 68.26%±8.56% 72.18%±5.46% 75.27%±2.83% 68.01%±6.30% 63.91%±4.89% 69.87%±5.34% 86.72%±4.57% 59.60%±0.56% 71.67%±2.92% 74.36%±3.65% 83.70%±3.41% 76.86%±4.23% 83.05%±6.11% 87.08%±4.46%
10 70.22%±3.05% 67.00%±3.06% 77.76%±4.24% 78.71%±6.26% 81.31%±2.27% 78.90%±2.84% 77.84%±4.09% 72.26%±3.41% 77.33%±3.45% 94.03%±2.57% 64.20%±0.43% 80.86%±3.19% 83.39%±3.33% 90.88%±2.58% 88.79%±3.23% 91.15%±2.77% 94.81%±2.82%
20 75.85%±2.37% 75.80%±2.31% 84.70%±1.91% 87.71%±2.02% 89.14%±1.94% 81.65%±2.14% 86.85%±1.99% 75.26%±2.20% 83.61%±2.53% 96.43%±1.50% 82.68%±2.70% 90.28%±2.87% 89.34%±1.54% 95.63%±1.10% 94.56%±2.21% 94.84%±1.56% 98.14%±0.80%
30 76.45%±1.50% 76.13%±1.85% 87.33%±1.69% 90.61%±1.41% 90.64%±1.60% 85.56%±1.62% 87.63%±1.79% 78.49%±1.32% 86.60%±1.57% 97.26%±1.18% 89.45%±0.98% 93.41%±1.26% 91.26%±0.99% 96.24%±1.33% 97.11%±1.04% 95.96%±0.94% 98.69%±0.41%
40 77.76%±1.26% 77.41%±1.49% 89.13%±1.17% 92.50%±1.08% 91.77%±1.19% 88.27%±1.33% 90.04%±1.28% 81.17%±1.78% 88.56%±1.29% 97.53%±0.86% 94.79%±0.34% 95.45%±0.89% 92.19%±0.81% 96.72%±1.14% 98.13%±0.36% 96.48%±1.04% 98.94%±0.64%
50 79.12%±1.31% 78.77%±1.31% 91.01%±1.46% 93.62%±0.79% 92.66%±0.65% 89.75%±1.58% 91.71%±1.19% 82.96%±1.71% 90.04%±1.10% 97.74%±0.57% 95.71%±0.23% 96.60%±0.99% 93.25%±0.90% 97.34%±0.77% 98.65%±0.37% 96.98%±0.59% 99.01%±0.61%
60 80.52%±1.32% 79.87%±1.16% 92.05%±1.07% 94.59%±0.62% 93.62%±0.92% 91.40%±1.13% 92.99%±0.85% 84.97%±2.19% 91.40%±0.91% 97.96%±0.62% 96.19%±0.46% 96.95%±0.72% 93.99%±1.08% 97.84%±0.49% 98.95%±0.29% 97.29%±0.41% 99.27%±0.32%

Houston
2013

5 65.82%±4.04% 65.92%±3.98% 65.13%±2.10% 71.63%±2.61% 73.86%±2.24% 64.69%±2.09% 67.73%±2.65% 70.41%±2.39% 70.79%±2.40% 73.72%±0.41% 56.42%±2.11% 70.61%±3.31% 58.29%±4.21% 65.44%±2.78% 73.84%±2.94% 74.29%±2.49% 74.83%±3.14%
10 77.09%±1.90% 76.93%±1.80% 79.21%±2.06% 83.62%±1.49% 84.10%±1.72% 68.67%±2.29% 81.22%±1.85% 79.29%±2.78% 79.71%±0.84% 81.89%±2.37% 70.69%±2.19% 81.15%±3.07% 73.87%±2.87% 78.20%±1.80% 83.76%±1.07% 83.75%±1.28% 86.17%±1.06%
20 84.32%±0.85% 84.12%±1.06% 86.98%±1.55% 90.48%±0.89% 89.73%±1.94% 85.63%±1.00% 88.64%±1.18% 85.51%±1.57% 85.07%±1.35% 87.86%±1.84% 85.05%±1.20% 89.16%±1.34% 82.12%±1.22% 87.04%±0.75% 90.48%±1.36% 89.85%±1.46% 91.33%±1.10%
30 87.10%±0.66% 86.81%±0.87% 91.32%±0.79% 93.47%±0.59% 92.59%±0.76% 89.40%±0.86% 91.97%±0.80% 87.92%±1.64% 87.73%±0.81% 91.02%±1.11% 85.48%±1.43% 92.47%±1.35% 87.38%±0.87% 91.63%±5.74% 93.53%±0.77% 93.31%±0.61% 94.42%±0.51%
40 89.17%±0.70% 88.86%±0.87% 93.08%±0.68% 94.71%±0.93% 93.78%±0.70% 91.69%±0.47% 93.83%±0.69% 90.12%±1.74% 89.34%±1.08% 92.51%±0.89% 87.68%±1.19% 94.35%±0.69% 89.78%±0.82% 93.49%±0.66% 95.35%±0.93% 95.18%±0.73% 95.95%±0.59%
50 90.59%±0.75% 90.22%±0.64% 94.64%±0.71% 95.88%±0.52% 95.12%±0.55% 93.34%±0.67% 94.97%±0.67% 91.70%±1.18% 91.04%±0.70% 93.31%±0.49% 92.83%±1.15% 96.04%±0.49% 91.83%±0.52% 95.44%±0.81% 96.61%±0.68% 96.30%±0.79% 96.91%±0.60%
60 91.55%±0.63% 91.26%±0.66% 95.23%±0.61% 96.31%±0.54% 95.45%±0.52% 94.19%±0.45% 95.72%±0.49% 92.22%±1.72% 92.11%±0.50% 93.79%±1.28% 95.77%±0.95% 97.29%±0.34% 93.22%±0.59% 96.22%±0.65% 97.28%±0.64% 97.02%±0.70% 97.60%±0.57%
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samples varies. Table VII shows the classification results
from different models and the proposed S3-ULDA, where the
parameters of the comparative models (such as SuperPCA, S3-
PCA, FG SuULDA, SHDA and the deep learning models) are
optimally set as indicated in the original papers. It can be seen
from the results that the superpixelwise DR models (such as
S3-PCA, FG SuULDA, SHDA and the proposed S3-ULDA)
outperform other models such as typical DR models and deep
learning, especially when the number of training samples is
limited. In addition, for all the comparative deep learning
models we find that GiGCN based on superpixels and GCN
achieves the highest OAs when training data is few (T.N.s/C
=5, 10) which could demonstrate the effect of superpixels.
In contrast, C-SS-MTr based on masked autoencoder and
Transformer show better performance than other deep learning
models when the number of training data is relatively large
(T.N.s/C =50, 60). Not surprisingly, the proposed S3-ULDA
could outperform all the comparative deep learning models
in all cases. More interestingly, when the training data is
few (T.N.s/C =5, 10) it can be observed from Table VII
that the superpixels based models such as GiGCN, S3-PCA,
FG SuULDA, SHDA and the proposed S3-ULDA show better
performance than other models, because in the cases of few
training data the feature representation based on superpixels
could be more effective. Overall, the proposed S3-ULDA
outperforms superpixel-based feature extraction models and
state-of-the-art deep learning models in almost every scenario,
which demonstrates the effectiveness of the proposed model.

In addition to above (objective) comparison, we also subjec-
tively compare state-of-the-art superpixel-based feature reduc-
tion models such as SuperPCA, S3-PCA, SuperULDA (which
can be seen as FG SuULDA without 3D the flexible Gabor
filter), SHDA and the proposed S3-ULDA by means of 3D
data visualization. For the two fused superpixelwise feature
reduction models S3-PCA and the proposed S3-ULDA, we
first reduce the dimensionality of the three considered HSIs
to 30 and then classic PCA is performed to further reduce the
30-dimensional features to a 3D feature space for visualization
purposes. All labeled data in the considered HSIs are used for
creating the 3D data visualization. As it can be seen from
Fig. 6, the proposed S3-ULDA is superior to the comparative
models because, in the learnt 3D feature space, the samples
belonging to the same class stay closer, while data from
different classes appear away from other classes (especially in
the circled areas, which means the extracted low-dimensional
features from the proposed S3-ULDA are more discriminative
than those from comparative superpixel-based DR models).

With the above results in mind, an additional discussion
is made on the superpixel-based feature reduction models
(SuperPCA, S3-PCA, FG SuULDA, SHDA and the proposed
S3-ULDA). From the perspective of local features, PCA and
unsupervised LDA/LFDA are used in SuperPCA, S3-PCA and
the proposed S3-ULDA for local feature extraction, while
FG SuULDA and SHDA could only extract global features
via unsupervised LDA. Only S3-PCA and the proposed S3-
ULDA could extract global-local features. However, the global
features based on unsupervised LDA and the superpixel-level
local features based on unsupervised LFDA from the pro-

posed S3-ULDA are more discriminative than the PCA-based
global-local features from S3-PCA. Moreover, compared to
SHDA (where global and local structures are modeled by the
superpixel-based global and local graphs followed by global
feature extraction, in a graph embedding framework), the
local feature extraction model (SuperULFDA) adopted by the
proposed S3-ULDA could extract more effective local features
on a superpixel-by-superpixel basis, especially in areas with
mixed objects and noise/outliers.

V. CONCLUSIONS AND FUTURE LINES

In this paper, we propose a new superpixelwise feature
reduction model called S3-ULDA, which can learn effective
global-local and spectral-spatial features for accurate HSI
classification. After obtaining various homogeneous superpixel
blocks through ERS based superpixel segmentation technique,
superpixel-based local reconstruction is conducted to denoise
HSI. Then, a new SuperULDA algorithm is proposed to extract
global features based on both the original HSI and locally
reconstructed data, as well as the pseudo-labels of superpixels
provided by ERS. By simultaneously using the two data
sources, the extracted global features are more discriminative.
To further extract effective local features, a new SuperULFDA
algorithm is conducted locally on each superpixel (along
with its adjacent superpixels) as well as the corresponding
pseudo-labels, obtaining more effective local features than
PCA-based local feature extraction in SuperPCA, S3-PCA
and unsupervised LDA-based local feature representation in
SHDA. This is because LFDA can effectively deal with the
multimodality of adjacent superpixels and address the issue
that LDA only focuses on the global structures present in the
HSI. Finally, by simply fusing the obtained (global and local)
features, global-local and spectral-spatial features are obtained.
The experimental results demonstrate that these features are
more effective for classification purposes than those obtained
by other state-of-the-art methods.

In future work, we will deal with how to automatically
determine the optimal number of superpixels for the ERS
based segmentation technique. In addition, PCA-based local
features could be fused with the proposed LDA-based features
to further improve the performance of feature extraction.
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